
Optimization of special functions for quantum chemistry

Vladimir Mironov, Alexander Moskovsky

Department of Chemistry, Lomonosov Moscow State University,

Leninskie Gory 1/3, Moscow, 119991, Russian Federation

Electrostatic interaction in QC

Conclusion

Summary

Many steps in quantum chemical (QC) calculations use special functions, which are not included in the standard libraries. For example, Boys
functions, abscissas, and weights of Rys polynomials are used in electron repulsion integral calculations. Computation of these special
functions can be very expensive. Moreover, in many important cases of quantum chemistry calculations they are a major bottleneck. It
happens because many QC programs utilize obsolete code for these functions because the code was written decades ago. In this study, we
rewrote algorithms for calculation of the Rys polynomial abscissas and weights for modern hardware. We have found that using long
polynomial expansions can improve the speed of the calculations ~10x on Intel Xeon Phi x200 and 2-3 times on Intel Xeon v4.

Acknowledgements
This work is supported by Intel Parallel Compute Center program. We thank Klaus-Dieter Oertel
(Intel Corp.) and Yuri Alexeev (Argonne National Laboratory) for help in this research.

Results Introduction

• Adiabatic approximation – separation of motion of electrons and nuclei

• Atomic nuclei – classical charged particles, electrons – quantum particles

• Electronic Schrodinger equation:
𝐻𝑒Ψ𝑒 = 𝐸𝑒Ψ𝑒

𝐻𝑒 =
𝑄𝐴𝑄𝐵
|𝑅𝐴 − 𝑅𝐵|

𝐴,𝐵

−
ℎ2

2𝑚𝑖
𝛻𝑖
2

𝑖

−
𝑄𝐴
|𝑅𝐴 − 𝑟𝑖|

𝐴,𝑖

+
1

𝑟𝑖 − 𝑟𝑗𝑖,𝑗

Internuclear
repulsion

Electronic
kinetic energy

Electron-nuclear
attraction

Interelectronic
repulstion

• Simplest case – spherical Gaussian clouds:

𝐸𝐴𝐵 =
Φ1 𝐴, 𝑝, 𝑟1 Φ2 𝐵, 𝑞, 𝑟2

|𝑟1 − 𝑟2|

+∞

−∞

𝑑𝑟1𝑑𝑟2,

Φ 𝐴, 𝑝, 𝑟 = exp(−𝑝 𝑟 − 𝐴 2)

𝐸𝐴𝐵 =
4𝛼

𝜋
⋅ exp −𝛼𝑅𝐴𝐵

2 𝑡2 𝑑𝑡
1

0

𝛼 =
𝑝𝑞

𝑝 + 𝑞

• More complex cases – various kinds of electron repulsion
integrals (ERIs) over Cartesian Gaussians:

𝐸𝐴𝐵𝐶𝐷 =
Φ1 𝐴, 𝑎, 𝑟1 Φ2 𝐵, 𝑏, 𝑟1 Φ3 𝐶, 𝑐, 𝑟2 Φ4 𝐵, 𝑑, 𝑟2

|𝑟1 − 𝑟2|

+∞

−∞

𝑑𝑟1𝑑𝑟2

Φ 𝐴, 𝑝, 𝑟 = 𝑥𝑙𝑥𝑦𝑙𝑦𝑧𝑙𝑧exp(−𝑝 𝑟 − 𝐴 2)

𝑙𝑥 + 𝑙𝑦 + 𝑙𝑧 = 𝑙– angularmomentum

𝑅𝐴𝐵

𝑝

𝜋

3/2

exp(−𝑝 𝑟 − 𝐴 2)

𝑞

𝜋

3/2

exp(−𝑞 𝑟 − 𝐵 2)

𝐴

𝐵

Electrostatic interaction of charged Gaussian clouds

Basics of quantum chemistry (QC)

Gaussian-type orbitals (GTO) are widely used in quantum chemistry as a basis functions. Primitive GTO are
functions of the type:

 𝜒 𝑟 = 𝑥 − 𝐴𝑥
𝑎𝑥 𝑦 − 𝐴𝑦

𝑎𝑦
𝑧 − 𝐴𝑧

𝑎𝑧 𝑒−𝛼 𝑟−𝐴
2
 (1)

Typically, linear combinations of primitive GTO sharing the same center and angular momentum (contracted
GTO) are sued as a basis functions:

 𝑖, 𝑗 𝑘, 𝑙 = 𝐶𝑎𝑖𝐶𝑏𝑗𝐶𝑐𝑘𝐶𝑑𝑙(𝑎𝑏|𝑐𝑑)
𝑃
𝑑

𝑂
𝑐

𝑁
𝑏

𝑀
𝑎 (2)

Gaussian-type orbitals

ERI computation methods and
Type of special functions required

Gauss-like quadrature

Roots and weights of Rys polynomials:

Orthogonal polynomials class on (0,1)

with respect to weight function
exp −𝑇𝑥

2 𝑥

𝑇 ∈ (0,∞)

Auxiliary function expansion

Boys functions:

𝐹𝑚 𝑇 = exp −𝑇𝑥
2 𝑥2𝑚𝑑𝑥

1

0
,

𝑚 = 0,1,2… depends on angular momentum
𝑇 ∈ (0,∞)

Characteristics of special functions in ERI calculation:
• Functions of single argument
• Required implementations for broad angular momentum cases .
• Required precision is high to match ERI precision at least 10-10.
• High performance is needed for low angular momentum cases: in recent codes they take up to

80% of whole computation time

How special functions are calculated in QM software:
• Analytical expansion/numerical integration/recurrence use

Most precise, computationally very expensive
• Piecewise interpolation

Relatively fast, not feasible for whole range of arguments
• Asymptotical approximation at 𝑇 → ∞ or 𝑇 → 0

Fast, not applicable for all values of argument

• Needed implementations for Rys polynomial orders up to 13

• Numerical calculation: discretized Stieltjes procedure

• Asymptotically (𝑇 → ∞) trends to roots and weights of Hermite polynomials

𝑅𝑖 𝑇
𝑇→∞
𝐶𝑖
𝑅𝑇−1, 𝑊𝑖 𝑇

𝑇→∞
𝐶𝑖
𝑊𝑇−1/2

• Piecewise approximation in terms of 𝑇, 𝑇−1and exp −𝑇

Rys polynomial roots and weights calculation

Insigths for low angular momentum cases:
• Stieltjes procedure is too slow for 𝑁𝑟𝑜𝑜𝑡𝑠 < 6 (𝑙𝑖𝑖=𝑎,𝑏,𝑐,𝑑 < 10): typically a combination of

piecewise interpolation with asymptotical approximation is used

• Precision requirements are less strict: only few further multiplications/additions steps – accuracy
of ~10-12 is enough.

• Asymptotic condition holds for roughly 50% of all practical cases.

Polynomial fitting:
• Very common approach for fast and precise

approximation
• Used in calculation of multiple transcendental

functions

• Spline fitting is a particular case

• Pros: ×,+, FMA operations only; good pipeline
utilization

• In most cases it is impossible to find single
formula for the whole domain of target
function – it is usually separated in several
smaller intervals

• Problem of choice
• few large intervals and high-degree polynomials –

lot of clock cycles

• multiple short intervals and low-degree
polynomials – code optimization issues

Polynomial evaluation schemes:
• Horner’s method:

• 𝑆𝑛 = … 𝑎𝑛𝑥 + 𝑎𝑛−1 𝑥 + 𝑎𝑛−2 𝑥 +⋯)𝑥 + 𝑎0

• 𝐹𝑀𝐴 → 𝐹𝑀𝐴 → 𝐹𝑀𝐴 → ⋯ → 𝐹𝑀𝐴

• Commonly used for generic polynomial evaluation

• Only external parallelism is possible

• Estrin’s method:
• Binary tree-like evaluation scheme

•
𝑛

2
× 𝐹𝑀𝐴 →

𝑛

4
× 𝐹𝑀𝐴 → ⋯ → 𝐹𝑀𝐴

• Efficient utilization of SIMD parallelism

• Best latency for 𝑃𝑛 𝑥 , 𝑛 = 2
𝑘 − 1

• Ad hoc schemes:
• Can be tuned for hardware

• Extremely hard to generate even for small 𝑛

• Performance gain over other schemes may be negligible

• Intel Xeon CPU and Intel Xeon Phi x200 are still very different architectures
• AVX512 favors long polynomial expansion and few interpolation intervals
• Traditional piecewise approximations (including splines) should be used with care on Intel Xeon

Phi. Intel Xeon CPUs are much less sensitive to the number of interpolation intervals
• Vectorization is crucial for Intel Xeon Phi to compete with Intel Xeon CPU

Finding best interpolation scheme
• Precision requirements: 𝑚𝑎𝑥. 𝑟𝑒𝑙. 𝑒𝑟𝑟. ≤ 10−10
• Best evaluation scheme depends on the architecture

and the order of Gauss-Rys quadrature
• What is important for performance:

• Aggressive inlining
• Interprocedural optimization
• Vectorization

Selecting the number of intervals
• Workload:

• 2x 12-order polynomials over 𝑘 − 1 intervals, 1 case is
asymptotic expansion

• random argument, 50% cases are asymptotical

• 1 thread, Ntests=204800000

• Hardware:
• Broadwell – Intel Xeon E5-2697A v4

• KNL – Intel Xeon Phi 7250 (quadrant flat)

• Results:
• (auto-)Vectorization works for up to 5 interpolation

intervals on both Intel Xeon and Xeon Phi processors

• AVX2 – better to use more interpolation intervals and
short polynomials

• AVX512 – better to use few interpolation intervals and
long polynomials

Method of
choice

Ο(𝑁2) Ο(𝑁4) Time complexity:

AVX2: ≈2x

AVX512: >5x

-vec-threshold=0

Implementation design:
• Polynomial fitting for non-asymptotic cases

• Fit in Chebyshev basis, calculate in ordinary polynomial basis

• If beneficial – use rational polynomial (Padé) expansion: one division ↔ several FMA, higher
parallelism, higher precision for substantially non-polynomial interpolants

• 0,2𝑛 → (0,1) range reduction for numerical stability: no need for an expensive division operation

Implementation
Relative

error

Time, s

Broadwell KNL

Nroots = 1, original (8 “if” cases) - 2.48 13.9

Nroots = 1, poly12 (7 “if” cases) 7.5E-13 1.13 7.46

Nroots = 1, poly32 (2 “if” cases) 1.2E-10 0.98 1.38

Nroots = 1 , Padé 11/11 (2 “if” cases) 3.1E-14 1.41 1.54

Nroots = 2, original (9 cases) - 3.20 21.0

Nroots = 2, poly32 (3 “if” cases) 7.1E-14 2.81 4.40

Nroots = 2 , Padé 11/13 (2 “if” cases) 3.6E-11 1.85 3.83

