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Electrostatic interaction in QC 

Conclusion 

Summary 

Many steps in quantum chemical (QC) calculations use special functions, which are not included in the standard libraries. For example, Boys 
functions, abscissas, and weights of Rys polynomials are used in electron repulsion integral calculations. Computation of these special 
functions can be very expensive. Moreover, in many important cases of quantum chemistry calculations they are a major bottleneck. It 
happens because many QC programs utilize obsolete code for these functions because the code was written decades ago. In this study, we 
rewrote algorithms for calculation of the Rys polynomial abscissas and weights for modern hardware. We have found that using long 
polynomial expansions can improve the speed of the calculations ~10x on Intel Xeon Phi x200 and 2-3 times on Intel Xeon v4. 
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Results Introduction 

• Adiabatic approximation – separation of motion of electrons and nuclei 

• Atomic nuclei – classical charged particles, electrons – quantum particles 

• Electronic Schrodinger equation: 
𝐻𝑒Ψ𝑒 = 𝐸𝑒Ψ𝑒 
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• Simplest case – spherical Gaussian clouds: 

𝐸𝐴𝐵 =  
Φ1 𝐴, 𝑝, 𝑟1 Φ2 𝐵, 𝑞, 𝑟2
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• More complex cases – various kinds of electron repulsion 
integrals (ERIs) over Cartesian Gaussians: 

𝐸𝐴𝐵𝐶𝐷 =  
Φ1 𝐴, 𝑎, 𝑟1 Φ2 𝐵, 𝑏, 𝑟1 Φ3 𝐶, 𝑐, 𝑟2 Φ4 𝐵, 𝑑, 𝑟2
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Φ 𝐴, 𝑝, 𝑟 = 𝑥𝑙𝑥𝑦𝑙𝑦𝑧𝑙𝑧exp(−𝑝 𝑟 − 𝐴 2) 

𝑙𝑥 + 𝑙𝑦 + 𝑙𝑧 = 𝑙– angularmomentum 

𝑅𝐴𝐵 

𝑝

𝜋

3/2

exp(−𝑝 𝑟 − 𝐴 2) 

𝑞

𝜋

3/2

exp(−𝑞 𝑟 − 𝐵 2) 

𝐴 

𝐵 

Electrostatic interaction of charged Gaussian clouds 

Basics of quantum chemistry (QC) 

Gaussian-type orbitals (GTO) are widely used in quantum chemistry as a basis functions. Primitive GTO are 
functions of the type: 

 𝜒 𝑟 = 𝑥 − 𝐴𝑥
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Typically, linear combinations of primitive GTO sharing the same center and angular momentum (contracted 
GTO) are sued as a basis functions: 

 𝑖, 𝑗 𝑘, 𝑙 =     𝐶𝑎𝑖𝐶𝑏𝑗𝐶𝑐𝑘𝐶𝑑𝑙(𝑎𝑏|𝑐𝑑)
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Gaussian-type orbitals 

ERI computation methods and 
Type of special functions required 

Gauss-like quadrature 

Roots and weights of Rys polynomials: 

Orthogonal polynomials class on (0,1) 

with respect to weight function 
exp −𝑇𝑥
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𝑇 ∈ (0,∞) 

Auxiliary function expansion 

Boys functions: 

𝐹𝑚 𝑇 =  exp −𝑇𝑥
2 𝑥2𝑚𝑑𝑥

1

0
, 

𝑚 = 0,1,2… depends on angular momentum 
𝑇 ∈ (0,∞) 

Characteristics of special functions in ERI calculation: 
• Functions of single argument 
• Required implementations for broad angular momentum cases . 
• Required precision is high to match ERI precision at least 10-10. 
• High performance is needed for low angular momentum cases: in recent codes they take up to 

80% of whole computation time 
 

How special functions are calculated in QM software: 
• Analytical expansion/numerical integration/recurrence use 

Most precise, computationally very expensive 
• Piecewise interpolation 

Relatively fast, not feasible for whole range of arguments 
• Asymptotical approximation at 𝑇 → ∞ or 𝑇 → 0 

Fast, not applicable for all values of argument 

• Needed implementations for Rys polynomial orders up to 13 

• Numerical calculation: discretized Stieltjes procedure 

• Asymptotically (𝑇 → ∞) trends to roots and weights of Hermite polynomials 
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• Piecewise approximation in terms of 𝑇, 𝑇−1and exp −𝑇  

Rys polynomial roots and weights calculation 

Insigths for low angular momentum cases: 
• Stieltjes procedure is too slow for 𝑁𝑟𝑜𝑜𝑡𝑠 < 6 ( 𝑙𝑖𝑖=𝑎,𝑏,𝑐,𝑑 < 10): typically a combination of 

piecewise interpolation with asymptotical approximation is used 

• Precision requirements are less strict: only few further multiplications/additions steps – accuracy 
of ~10-12 is enough. 

• Asymptotic condition holds for roughly 50% of all practical cases. 

Polynomial fitting: 
• Very common approach for fast and precise 

approximation 
• Used in calculation of multiple transcendental 

functions 

• Spline fitting is a particular case 

• Pros: ×,+, FMA operations only; good pipeline 
utilization 

• In most cases it is impossible to find single 
formula for the whole domain of target 
function – it is usually separated in several 
smaller intervals 

• Problem of choice 
• few large intervals and high-degree polynomials – 

lot of clock cycles 

• multiple short intervals and low-degree 
polynomials – code optimization issues 

Polynomial evaluation schemes: 
• Horner’s method: 

• 𝑆𝑛 = … 𝑎𝑛𝑥 + 𝑎𝑛−1 𝑥 + 𝑎𝑛−2 𝑥 +⋯)𝑥 + 𝑎0 

• 𝐹𝑀𝐴 → 𝐹𝑀𝐴 → 𝐹𝑀𝐴 → ⋯ → 𝐹𝑀𝐴 

• Commonly used for generic polynomial evaluation 

• Only external parallelism is possible 

• Estrin’s method: 
• Binary tree-like evaluation scheme 

•
𝑛

2
× 𝐹𝑀𝐴 →

𝑛

4
× 𝐹𝑀𝐴 → ⋯ → 𝐹𝑀𝐴 

• Efficient utilization of SIMD parallelism 

• Best latency for 𝑃𝑛 𝑥 , 𝑛 = 2
𝑘 − 1 

• Ad hoc schemes: 
• Can be tuned for hardware 

• Extremely hard to generate even for small 𝑛 

• Performance gain over other schemes may be negligible 

• Intel Xeon CPU and Intel Xeon Phi x200 are still very different architectures 
• AVX512 favors long polynomial expansion and few interpolation intervals 
• Traditional piecewise approximations (including splines) should be used with care on Intel Xeon 

Phi. Intel Xeon CPUs are much less sensitive to the number of interpolation intervals 
• Vectorization is crucial for Intel Xeon Phi to compete with Intel Xeon CPU 

Finding best interpolation scheme 
• Precision requirements: 𝑚𝑎𝑥. 𝑟𝑒𝑙. 𝑒𝑟𝑟. ≤ 10−10 
• Best evaluation scheme depends on the architecture 

and the order of Gauss-Rys quadrature 
• What is important for performance: 

• Aggressive inlining 
• Interprocedural optimization 
• Vectorization 

Selecting the number of intervals 
• Workload: 

• 2x 12-order polynomials over 𝑘 − 1 intervals, 1 case is 
asymptotic expansion 

• random argument, 50% cases are asymptotical 

• 1 thread, Ntests=204800000 

• Hardware: 
• Broadwell – Intel Xeon E5-2697A v4 

• KNL – Intel Xeon Phi 7250 (quadrant flat) 

• Results: 
• (auto-)Vectorization works for up to 5 interpolation 

intervals on both Intel Xeon and Xeon Phi processors 

• AVX2 – better to use more interpolation intervals and 
short polynomials 

• AVX512 – better to use few interpolation intervals and 
long polynomials 

 

Method of 
choice 

Ο(𝑁2) Ο(𝑁4) Time complexity: 

AVX2: ≈2x 

AVX512: >5x 

-vec-threshold=0 

Implementation design: 
• Polynomial fitting for non-asymptotic cases 

• Fit in Chebyshev basis, calculate in ordinary polynomial basis 

• If beneficial – use rational polynomial (Padé) expansion: one division ↔ several FMA, higher 
parallelism, higher precision for substantially non-polynomial interpolants 

• 0,2𝑛 → (0,1) range reduction for numerical stability: no need for an expensive division operation 

 

Implementation 
Relative 

error 

Time, s 

Broadwell KNL 

Nroots = 1, original (8 “if” cases) - 2.48 13.9 

Nroots = 1, poly12 (7 “if” cases) 7.5E-13 1.13 7.46 

Nroots = 1, poly32 (2 “if” cases) 1.2E-10 0.98 1.38 

Nroots = 1 , Padé 11/11 (2 “if” cases) 3.1E-14 1.41 1.54 

Nroots = 2, original (9 cases) - 3.20 21.0 

Nroots = 2, poly32 (3 “if” cases) 7.1E-14 2.81 4.40 

Nroots = 2 , Padé 11/13 (2 “if” cases) 3.6E-11 1.85 3.83 


