(1) Introduction

Performance improvement of recent supercomputers relies on increasing the parallelism (i.e. the number of nodes or cores). On such highly parallel computers, the performance of a computation task could be communication-bound when the problem size per process is not large enough, and therefore communication avoiding techniques are required to improve the strong scaling performance. The 2.5D algorithm for paralle matrix multiplication (PDGEMM, $\mathrm{C}=\alpha \mathrm{AB}+\beta \mathrm{C}$) has been proposed [1] as one of such techniques. In this study, we have implemented a 2.5D parallel matrix multiplication using the SUMMA algorithm [2] and conducted the performance evaluation on the K computer (RIKEN AICS, JAPAN). A notable contribution of this study is that our implementation is designed to perform the 2.5D algorithm on 2D distributed matrices on a 2 D process grid, and it outperforms conventional 2D implementations (ScaLAPACK PDGEMM and 2D-SUMMA) even when the cost for matrix redistributions between 2D and 2.5D distributions is included. Also, this study presents a detailed performance analysis of the 2.5 D implementation by showing the breakdown of the execution time.

(2) 2.5D Matrix Multiplication

Figure 1. 3D process grid
Table 1. Comparison of 2.5D with 2D algorithm

	2D	2.5 D
Computation	$O\left(n^{3} / P_{A L L}\right)$	$O\left(n^{3} / P_{A L L}\right)$
Memory	$O\left(n^{2} / P_{A L L}\right)$	$O\left(P_{Z} n^{2} / P_{A L L}\right)$
Bandwidth	$O\left(n^{2} / P_{A L L}{ }^{1 / 2}\right)$	$O\left(n^{2} /\left(P_{Z} P_{A L L}\right)^{1 / 2}\right)$
Latency	$O\left(P_{A L L}^{1 / 2}\right)$	$O\left(\left(P_{A L L} / P_{Z}^{3}\right)^{1 / 2}\right)$

- $P_{\text {ALLL }}$: total number of processes
- P_{z} : number of processes for z-dimension

The 2.5D algorithm uses a 3D process grid ($P_{x} \times P_{Y} \times P_{z}$) as shown in Figure 1 and stacks the matrices that distributed on a 2D ($P_{X}-P_{Y}$) process grid along the Z (vertical) direction: the matrices are duplicated P_{Z}-times on each $P_{X}-P_{Y}$ grid. On each $P_{X}-P_{Y}$ grid, $1 / \mathrm{P}_{\mathrm{z}}$ of a conventional parallel matrix multiplication algorithm is performed, and then, the final result is computed by reducing the temporal results on each $P_{X}-P_{Y}$ grid among the P_{z} processes. The details including the theoretical cost are described in the paper [1]. Table 1 summarizes the theoretical costs of 2D and 2.5D algorithms.

(4) Performance Evaluation

(3) Implementation

Figure 2. Overview of our 2.5D PDGEMM implementation

Our implementation is designed to perform the 2.5D algorithm on 2D distributed matrices on a 2D process grid. Therefore, it creates a 2.5D process grid from the 2D process grid and requires matrix redistributions between 2D and 2.5D distributions. Figure 2 shows the overview of the implementation. The implementation consists of 4 steps. Step 1 is the MPI sub-communicator setup phase, and it is required only once in the case of calling the PDGEMM routine multiple times. Step 2 redistributes Matrices A \& B from 2D to 2.5D by using MPI_Allgather. Step 3 performs 2.5D matrix multiplication. This study uses the SUMMA algorithm [2] as a parallel matrix multiplication algorithm. Finally, step 4 computes the final result of Matrix C by using MPI_Allreduce. Steps 2 and 4 require matrix reordering to fit the MPI collective communications. Note that our current implementation only supports square matrices, square process grid, and fixed nb size.

Figure 3. Performance comparison (strong scaling, $\mathrm{n}=32768$)

Figure 4. Performance comparison (different problem sizes, 4096 nodes)

- Evaluation environment and conditions

System	K computer (RIKEN AICS)

Environment version K-1 2 0-21 (released lan. 10, 2017)

Environment version	K-1.2.0-21 (released: Jan. 10, 2017)
Processor (per node)	SPARC64 VIIfx

Memory (per node)	DD
Network	T

8 cores, $2.0 \mathrm{GHz}, 128$ GFlops (double-precision) Network

Tofu interconnect (6 dimensional mesh/torus)
Compiler
Compile options mpiccpx
-Xg -Kfast, parallel,openmp -O3 -MD
-SCALAPACK -SSL2BLAMP
MPI \& OpenMP
1 MPI-process per node
configuration
8 threads per MPI-process (1 thread per core)
PJM configurations \#PJM -rsc-list "node $=\mathrm{P}_{20 \mathrm{X}} \times \mathrm{P}_{2 \text { 2V }}$

- The performances are the best values obtained by executing a routine 3 times on a program and executing the program 2 times on a job script - The values on the breakdown figures are average of the execution times on each thread obtained by Fujitsu's Advanced Profiler (fapp)
- On ScaLAPACK PDGEMM, the block size: $n b=n / P_{2 D x}$
- Legend (breakdown of ScaLAPACK)

Legend (breakdown of ScaLAPACK)	
MPI_Send	MPI communication functions in ScaLAPACK

MPI Recy MPI commu
MPI_Recv

MPI_Type_vector
MPI_Type_commit

MPI_Type_free
Others
Non-communication MPI functions
Others except for above the MPI functions
■ Legend (breakdown of our SUMMA implementation)
MPI Bcast \quad MPI communication function in SUMMA
MPI_Bcast

	Reduction and Redistribution from 2.5D to 2D

MPI-Com_split MPI sub-communicator setup

| MPI_Comm_size |
| :--- | :--- | :--- |
| MPI_Comm_rank |
| MPI |

MPI_Comm_free
Others

Non-communication MPI functions
Others except for above the MPI functions Others except for above the MPI
(most of them are DGEMM cost)

We conducted the performance evaluation on the K computer. Figure 3 shows the strong scaling performance on $n=32768$ using 256 to 16384 nodes. Figure 4 shows the performances of different problem sizes on 4096 nodes. Note that SUMMA- $P_{\mathrm{Z}}=1$ corresponds the conventional 2D SUMMA implementation.
SUMMA- $\mathrm{P}_{\mathrm{z}}=4$ outperformed ScaLAPACK PDGEMM and 2D-SUMMA ($\mathrm{P}_{\mathrm{z}}=1$): the 2.5D implementation is effective when the performance is communication bound even when including the cost for matrix redistributions between 2 D and 2.5 D distributions.

The cost of MPI Comm split (required on the MPI sub-communicator setup phase: step 1 shown in Figure 2) is not negligible in the case of the problem size per process is small enough. This phase is required only once even when using the PDGEMM routine multiple times. Therefore, the phase should be provided as a separated function (an initialization function) or use of MPI sub-communicators should be avoided. The performances without MPI_Comm_*** functions are shown with dotted lines in the left side figures.
On SUMMA- $P_{z}=16$, the cost for the redistribution and reduction (steps 2 and 4 shown in Figure 2) increased and thus the performance degraded compared to the case of $\mathrm{P}_{\mathrm{Z}}=4$

(5) Conclusion and Future Work

The 2.5D implementation is effective to improve the strong scaling performance even when including the cost for matrix redistributions between 2D and 2.5D distributions when compared to the conventional 2 D implementation.
The cost of MPI_Comm_split is not negligible in the case of problem size per process is small enough.
Future work includes overwrapping implementation [3], supporting for nonsquare process grid, auto-tuning for selecting implementations (2D or 2.5 D) and the parameter P_{z} (model-driven approach is also applicable), and performance evaluation on actual applications.

[^0]
Acknowledgement:

The results were obtained by using the K computer at the RIKEN Advanced Institute for Computational Science (project number RA000022). This study is a part of the Flagship2020 project. We thank Akiy
and Naoki Sueyasu (Fujitsu Limited) for helpful suggestions and discussions

[^0]: References:
 [1] E. Solomonik and J. Demmel: Communication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms, pp. 90-109 [2] R. A [2] R. A. van de Geijn and J. Watts: SUMMA: Scalable Universal Matrix Multiplication Algorithm, Technical report, Austin, TX, USA (1995).
 [3] E. Georganas, J. González-Dominguez, E. Solomonik, Y. Zheng, J. Touriño and K. Yelick: Communication Avoiding and Overlapping for Numerical Linear Algebra, Proc. International Conference on High Performance Computing, Networking, Storage and Analysis, SC'12, pp. 100:1-100:11 (2012).

