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Performance improvement of recent supercomputers relies on increasing the 
parallelism (i.e. the number of nodes or cores). On such highly parallel computers, the 
performance of a computation task could be communication-bound when the problem 
size per process is not large enough, and therefore communication avoiding techniques 
are required to improve the strong scaling performance. The 2.5D algorithm for parallel 
matrix multiplication (PDGEMM, C=αAB+βC) has been proposed [1] as one of such 
techniques. In this study, we have implemented a 2.5D parallel matrix multiplication 
using the SUMMA algorithm [2] and conducted the performance evaluation on the K 
computer (RIKEN AICS, JAPAN). A notable contribution of this study is that our 
implementation is designed to perform the 2.5D algorithm on 2D distributed matrices on 
a 2D process grid, and it outperforms conventional 2D implementations (ScaLAPACK 
PDGEMM and 2D-SUMMA) even when the cost for matrix redistributions between 2D 
and 2.5D distributions is included. Also, this study presents a detailed performance 
analysis of the 2.5D implementation by showing the breakdown of the execution time. 

System	
 K	
  computer	
  (RIKEN	
  AICS)	

Environment	
  version	
K-­‐1.2.0-­‐21	
  (released:	
  Jan.	
  10,	
  2017)	

Processor	
  (per	
  node)	
SPARC64	
  VIIIfx	
  

8	
  cores,	
  2.0	
  GHz,	
  128	
  GFlops	
  (double-­‐precision)	

Memory	
  (per	
  node)	
 DDR3	
  16GB,	
  64GB/s	

Network	
 Tofu	
  interconnect	
  (6	
  dimensional	
  mesh/torus)	
  

5	
  GB/s	
  for	
  each	
  direcVon	
  
Compiler	
 mpiccpx	

Compile	
  op:ons	
 -­‐Xg	
  -­‐Kfast,parallel,openmp	
  -­‐O3	
  -­‐MD	
  	
  	
  

-­‐SCALAPACK	
  –SSL2BLAMP	

MPI	
  &	
  OpenMP	
  	
  
configura:on	


1	
  MPI-­‐process	
  per	
  node	
  
8	
  threads	
  per	
  MPI-­‐process	
  (1	
  thread	
  per	
  core)	


PJM	
  configura:ons	
 #PJM	
  -­‐rsc-­‐list	
  “node=P2DXxP2DY”	
  

n  Evaluation environment and conditions	
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The 2.5D algorithm uses a 3D process grid (PX×PY×PZ) as shown in Figure 1 and 
stacks the matrices that distributed on a 2D (PX-PY) process grid along the Z (vertical) 
direction: the matrices are duplicated PZ-times on each PX-PY grid. On each PX-PY grid, 
1/PZ of a conventional parallel matrix multiplication algorithm is performed, and then, the 
final result is computed by reducing the temporal results on each PX-PY grid among the 
PZ processes. The details including the theoretical cost are described in the paper [1]. 
Table 1 summarizes the theoretical costs of 2D and 2.5D algorithms. 

Our implementation is designed to perform the 2.5D algorithm on 2D distributed matrices 
on a 2D process grid. Therefore, it creates a 2.5D process grid from the 2D process grid 
and requires matrix redistributions between 2D and 2.5D distributions. Figure 2 shows 
the overview of the implementation. The implementation consists of 4 steps. Step 1 is the 
MPI sub-communicator setup phase, and it is required only once in the case of calling the 
PDGEMM routine multiple times. Step 2 redistributes Matrices A & B from 2D to 2.5D by 
using MPI_Allgather. Step 3 performs 2.5D matrix multiplication. This study uses the 
SUMMA algorithm [2] as a parallel matrix multiplication algorithm. Finally, step 4 
computes the final result of Matrix C by using MPI_Allreduce. Steps 2 and 4 require 
matrix reordering to fit the MPI collective communications. Note that our current 
implementation only supports square matrices, square process grid, and fixed nb size. 

Figure 3. Performance comparison (strong scaling, n=32768)	


Figure 4. Performance comparison (different problem sizes, 4096 nodes)	


•  The 2.5D implementation is effective to improve the strong scaling performance 
even when including the cost for matrix redistributions between 2D and 2.5D 
distributions when compared to the conventional 2D implementation. 

•  The cost of MPI_Comm_split is not negligible in the case of problem size per 
process is small enough. 

•  Future work includes overwrapping implementation [3], supporting for non-
square process grid, auto-tuning for selecting implementations (2D or 2.5D) 
and the parameter PZ (model-driven approach is also applicable), and 
performance evaluation on actual applications. 

•  The performances are the best values obtained by executing a routine 3 
times on a program and executing the program 2 times on a job script  

•  The values on the breakdown figures are average of the execution times 
on each thread obtained by Fujitsu’s Advanced Profiler (fapp)  

•  On ScaLAPACK PDGEMM, the block size: nb = n/P2DX  

Figure 2. Overview of our 2.5D PDGEMM implementation	


Step 3: 2.5D-PDGEMM 
 (1) Perform 1/PZ of 2D-SUMMA 
                        on each X-Y grid 
          (on commrow & commcol)  

Step 1: MPI sub-communicator setup 
 (1) MPI_Comm_split (comm2dsub from MPI_COMM_WORLD) 
 (2) MPI_Comm_split (comm3dz from MPI_COMM_WORLD) 
 (3) MPI_Comm_split (commrow from comm2dsub) 
 (4) MPI_Comm_split (commcol from comm2dsub) 

 Step 2: Redistribution of 
      Mat.A & B (2D to 2.5D) 
 (1) MPI_Allgather 
       (Mat.A & Mat.B on comm3dz) 
 (2) Reorder (Mat.A & Mat.B) 

comm3dz	

comm2dsub	


comm2dsub	


commrow	


P3DY	
P3DX	


P2DX	
 P2DY	


PALL: total # of processes 
P2DX=P2DY=sqrt(PALL) 
P3DX=P3DY=sqrt(PALL/PZ)	


nb2D	

	


nb2D	


m	
n	


nb3D	

	


nb3D	


Matrix size: m×n 
nb2D=m/P2DX=n/P2DY 
nb3D=m/P3DX=n/P3DY	


PZ	


Step 4: Reduction of Mat.C and 
             Redistribution (2.5D to 2D) 
 (1) MPI_Allreduce (Mat.C on comm3dz) 
 (2) Reorder (Mat.C) 
 	


•  The cost of MPI_Comm_split (required on the MPI sub-communicator setup phase: step 1 
shown in Figure 2) is not negligible in the case of the problem size per process is small 
enough. This phase is required only once even when using the PDGEMM routine multiple 
times. Therefore, the phase should be provided as a separated function (an initialization 
function) or use of MPI sub-communicators should be avoided. The performances without 
MPI_Comm_*** functions are shown with dotted lines in the left side figures. 

•  On SUMMA-PZ=16, the cost for the redistribution and reduction (steps 2 and 4 shown in 
Figure 2) increased and thus the performance degraded compared to the case of PZ=4.  

2D 2.5D 
Computation O(n3/PALL) O(n3/PALL) 
Memory O(n2/PALL) O(PZn2/PALL) 
Bandwidth O(n2/PALL

1/2) O(n2/(PZPALL)1/2) 
Latency O(PALL

1/2) O((PALL/PZ
3)1/2) 

Table 1. Comparison of 2.5D with 2D algorithm	


•  PALL: total number of processes 
•  PZ: number of processes for z-dimension 
•  n: matrix size  	


PZ	


PY=(PALL/PZ)1/2	

PX=(PALL/PZ)1/2	


Figure 1. 3D process grid	
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Performance (n=32768)	
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n  Legend (breakdown of ScaLAPACK)	


n  Legend (breakdown of our SUMMA implementation)	
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Performance (4096 nodes)	


•  We conducted the performance evaluation on the K computer. Figure 3 shows the 
strong scaling performance on n=32768 using 256 to 16384 nodes. Figure 4 shows 
the performances of different problem sizes on 4096 nodes. Note that SUMMA-PZ=1 
corresponds the conventional 2D SUMMA implementation.  

•  SUMMA-PZ=4 outperformed ScaLAPACK PDGEMM and 2D-SUMMA (PZ=1): the 2.5D 
implementation is effective when the performance is communication bound even when 
including the cost for matrix redistributions between 2D and 2.5D distributions. 

  (5) Conclusion and Future Work	
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  (2) 2.5D Matrix Multiplication 	
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comm2dsub	


commcol	


comm2dsub	


3.3x speedup 
over SUMMA-PZ=1 
without MPI_comm 

setup costs	


4.7x speedup 
over SUMMA-PZ=1 
without MPI_comm 

setup costs	



