
Implementation and Evaluation of
2.5D Matrix Multiplication
on K Computer

ISC2017 June 18-21, Frankfurt, Germany

Daichi Mukunoki (daichi.mukunoki@riken.jp)
Toshiyuki Imamura (imamura.toshiyuki@riken.jp)
RIKEN Advanced Institute for Computational Science

Performance improvement of recent supercomputers relies on increasing the
parallelism (i.e. the number of nodes or cores). On such highly parallel computers, the
performance of a computation task could be communication-bound when the problem
size per process is not large enough, and therefore communication avoiding techniques
are required to improve the strong scaling performance. The 2.5D algorithm for parallel
matrix multiplication (PDGEMM, C=αAB+βC) has been proposed [1] as one of such
techniques. In this study, we have implemented a 2.5D parallel matrix multiplication
using the SUMMA algorithm [2] and conducted the performance evaluation on the K
computer (RIKEN AICS, JAPAN). A notable contribution of this study is that our
implementation is designed to perform the 2.5D algorithm on 2D distributed matrices on
a 2D process grid, and it outperforms conventional 2D implementations (ScaLAPACK
PDGEMM and 2D-SUMMA) even when the cost for matrix redistributions between 2D
and 2.5D distributions is included. Also, this study presents a detailed performance
analysis of the 2.5D implementation by showing the breakdown of the execution time.

System	
 K	
 computer	
 (RIKEN	
 AICS)	

Environment	
 version	
K-­‐1.2.0-­‐21	
 (released:	
 Jan.	
 10,	
 2017)	

Processor	
 (per	
 node)	
SPARC64	
 VIIIfx	

8	
 cores,	
 2.0	
 GHz,	
 128	
 GFlops	
 (double-­‐precision)	

Memory	
 (per	
 node)	
 DDR3	
 16GB,	
 64GB/s	

Network	
 Tofu	
 interconnect	
 (6	
 dimensional	
 mesh/torus)	

5	
 GB/s	
 for	
 each	
 direcVon	

Compiler	
 mpiccpx	

Compile	
 op:ons	
 -­‐Xg	
 -­‐Kfast,parallel,openmp	
 -­‐O3	
 -­‐MD	
 	
 	

-­‐SCALAPACK	
 –SSL2BLAMP	

MPI	
 &	
 OpenMP	
 	

configura:on	

1	
 MPI-­‐process	
 per	
 node	

8	
 threads	
 per	
 MPI-­‐process	
 (1	
 thread	
 per	
 core)	

PJM	
 configura:ons	
 #PJM	
 -­‐rsc-­‐list	
 “node=P2DXxP2DY”	

n  Evaluation environment and conditions	

References:
[1] E. Solomonik and J. Demmel: Communication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms, pp. 90–109
(2011).
[2] R. A. van de Geijn and J. Watts: SUMMA: Scalable Universal Matrix Multiplication Algorithm, Technical report, Austin, TX, USA (1995).
[3] E. Georganas, J. González-Domínguez, E. Solomonik, Y. Zheng, J. Touriño and K. Yelick: Communication Avoiding and Overlapping
for Numerical Linear Algebra, Proc. International Conference on High Performance Computing, Networking, Storage and Analysis, SC’12,
pp. 100:1–100:11 (2012).

Acknowledgement:
The results were obtained by using the K computer at the RIKEN Advanced Institute for Computational Science (project number:
RA000022). This study is a part of the Flagship2020 project. We thank Akiyoshi Kuroda (RIKEN AICS), Eiji Yamanaka (Fujitsu Limited),
and Naoki Sueyasu (Fujitsu Limited) for helpful suggestions and discussions.

The 2.5D algorithm uses a 3D process grid (PX×PY×PZ) as shown in Figure 1 and
stacks the matrices that distributed on a 2D (PX-PY) process grid along the Z (vertical)
direction: the matrices are duplicated PZ-times on each PX-PY grid. On each PX-PY grid,
1/PZ of a conventional parallel matrix multiplication algorithm is performed, and then, the
final result is computed by reducing the temporal results on each PX-PY grid among the
PZ processes. The details including the theoretical cost are described in the paper [1].
Table 1 summarizes the theoretical costs of 2D and 2.5D algorithms.

Our implementation is designed to perform the 2.5D algorithm on 2D distributed matrices
on a 2D process grid. Therefore, it creates a 2.5D process grid from the 2D process grid
and requires matrix redistributions between 2D and 2.5D distributions. Figure 2 shows
the overview of the implementation. The implementation consists of 4 steps. Step 1 is the
MPI sub-communicator setup phase, and it is required only once in the case of calling the
PDGEMM routine multiple times. Step 2 redistributes Matrices A & B from 2D to 2.5D by
using MPI_Allgather. Step 3 performs 2.5D matrix multiplication. This study uses the
SUMMA algorithm [2] as a parallel matrix multiplication algorithm. Finally, step 4
computes the final result of Matrix C by using MPI_Allreduce. Steps 2 and 4 require
matrix reordering to fit the MPI collective communications. Note that our current
implementation only supports square matrices, square process grid, and fixed nb size.

Figure 3. Performance comparison (strong scaling, n=32768)	

Figure 4. Performance comparison (different problem sizes, 4096 nodes)	

•  The 2.5D implementation is effective to improve the strong scaling performance
even when including the cost for matrix redistributions between 2D and 2.5D
distributions when compared to the conventional 2D implementation.

•  The cost of MPI_Comm_split is not negligible in the case of problem size per
process is small enough.

•  Future work includes overwrapping implementation [3], supporting for non-
square process grid, auto-tuning for selecting implementations (2D or 2.5D)
and the parameter PZ (model-driven approach is also applicable), and
performance evaluation on actual applications.

•  The performances are the best values obtained by executing a routine 3
times on a program and executing the program 2 times on a job script

•  The values on the breakdown figures are average of the execution times
on each thread obtained by Fujitsu’s Advanced Profiler (fapp)

•  On ScaLAPACK PDGEMM, the block size: nb = n/P2DX

Figure 2. Overview of our 2.5D PDGEMM implementation	

Step 3: 2.5D-PDGEMM
 (1) Perform 1/PZ of 2D-SUMMA
 on each X-Y grid
 (on commrow & commcol)

Step 1: MPI sub-communicator setup
 (1) MPI_Comm_split (comm2dsub from MPI_COMM_WORLD)
 (2) MPI_Comm_split (comm3dz from MPI_COMM_WORLD)
 (3) MPI_Comm_split (commrow from comm2dsub)
 (4) MPI_Comm_split (commcol from comm2dsub)

 Step 2: Redistribution of
 Mat.A & B (2D to 2.5D)
 (1) MPI_Allgather
 (Mat.A & Mat.B on comm3dz)
 (2) Reorder (Mat.A & Mat.B)

comm3dz	

comm2dsub	

comm2dsub	

commrow	

P3DY	
P3DX	

P2DX	
 P2DY	

PALL: total # of processes
P2DX=P2DY=sqrt(PALL)
P3DX=P3DY=sqrt(PALL/PZ)	

nb2D	

	

nb2D	

m	
n	

nb3D	

	

nb3D	

Matrix size: m×n
nb2D=m/P2DX=n/P2DY
nb3D=m/P3DX=n/P3DY	

PZ	

Step 4: Reduction of Mat.C and
 Redistribution (2.5D to 2D)
 (1) MPI_Allreduce (Mat.C on comm3dz)
 (2) Reorder (Mat.C)
 	

•  The cost of MPI_Comm_split (required on the MPI sub-communicator setup phase: step 1
shown in Figure 2) is not negligible in the case of the problem size per process is small
enough. This phase is required only once even when using the PDGEMM routine multiple
times. Therefore, the phase should be provided as a separated function (an initialization
function) or use of MPI sub-communicators should be avoided. The performances without
MPI_Comm_*** functions are shown with dotted lines in the left side figures.

•  On SUMMA-PZ=16, the cost for the redistribution and reduction (steps 2 and 4 shown in
Figure 2) increased and thus the performance degraded compared to the case of PZ=4.

2D 2.5D
Computation O(n3/PALL) O(n3/PALL)
Memory O(n2/PALL) O(PZn2/PALL)
Bandwidth O(n2/PALL

1/2) O(n2/(PZPALL)1/2)
Latency O(PALL

1/2) O((PALL/PZ
3)1/2)

Table 1. Comparison of 2.5D with 2D algorithm	

•  PALL: total number of processes
•  PZ: number of processes for z-dimension
•  n: matrix size 	

PZ	

PY=(PALL/PZ)1/2	

PX=(PALL/PZ)1/2	

Figure 1. 3D process grid	

Breakdown	

Breakdown	

 0

 20

 40

 60

 80

 100

256
1024

4096
16384

%

of processes

SUMMA-PZ=16

 0

 20

 40

 60

 80

 100

256
1024

4096
16384

%

of processes

SUMMA-PZ=4

 0

 20

 40

 60

 80

 100

256
1024

4096
16384

%

of processes

SUMMA-PZ=1

 0

 20

 40

 60

 80

 100

256
1024

4096
16384

%

of processes

ScaLAPACK

Cannot
perform
with
PZ=16	

ScaLAPACK
SUMMA-PZ=1
SUMMA-PZ=4
SUMMA-PZ=16

 0
 10
 20
 30
 40
 50
 60
 70
 80

 256 1024 4096 16384

%
 o

f t
he

or
et

ica
l p

ea
k

of processes

n=32768

*Dotted line: performance not
including MPI_Comm functions

Performance (n=32768)	

 0

 20

 40

 60

 80

 100

8192
16384

32768
65536

%

problem size

SUMMA-PZ=16

 0

 20

 40

 60

 80

 100

8192
16384

32768
65536

%

problem size

SUMMA-PZ=4

 0

 20

 40

 60

 80

 100

8192
16384

32768
65536

%

problem size

SUMMA-PZ=1

 0

 20

 40

 60

 80

 100

8192
16384

32768
65536

%

problem size

ScaLAPACK
MPI_Send	
 MPI	
 communicaVon	
 funcVons	
 in	
 ScaLAPACK	

PDGEMM	
MPI_Recv	

MPI_Type_vector	

Non-­‐communicaVon	
 MPI	
 funcVons	
MPI_Type_commit	

MPI_Type_free	

Others	
 Others	
 except	
 for	
 above	
 the	
 MPI	
 funcVons	

(most	
 of	
 them	
 are	
 DGEMM	
 cost)	

MPI_Bcast	
 MPI	
 communicaVon	
 funcVon	
 in	
 SUMMA	

MPI_Allgather	
 RedistribuVon	
 from	
 2D	
 to	
 2.5D	

MPI_Allreduce	
 ReducVon	
 and	
 RedistribuVon	
 from	
 2.5D	
 to	
 2D	

MPI_Comm_split	
 MPI	
 sub-­‐communicator	
 setup	

MPI_Comm_size	

Non-­‐communicaVon	
 MPI	
 funcVons	
MPI_Comm_rank	

MPI_Comm_free	

Others	
 Others	
 except	
 for	
 above	
 the	
 MPI	
 funcVons	

(most	
 of	
 them	
 are	
 DGEMM	
 cost)	

n  Legend (breakdown of ScaLAPACK)	

n  Legend (breakdown of our SUMMA implementation)	

 0

 10

 20

 30

 40

 50

 60

 70

 8192 16384 32768 65536

%
 o

f t
he

or
et

ica
l p

ea
k

problem size

4096 nodes

ScaLAPACK
SUMMA-PZ=1
SUMMA-PZ=4
SUMMA-PZ=16

*Dotted line: performance not
including MPI_Comm functions

Performance (4096 nodes)	

•  We conducted the performance evaluation on the K computer. Figure 3 shows the
strong scaling performance on n=32768 using 256 to 16384 nodes. Figure 4 shows
the performances of different problem sizes on 4096 nodes. Note that SUMMA-PZ=1
corresponds the conventional 2D SUMMA implementation.

•  SUMMA-PZ=4 outperformed ScaLAPACK PDGEMM and 2D-SUMMA (PZ=1): the 2.5D
implementation is effective when the performance is communication bound even when
including the cost for matrix redistributions between 2D and 2.5D distributions.

 (5) Conclusion and Future Work	

 (4) Performance Evaluation	

 (2) 2.5D Matrix Multiplication 	

 (1) Introduction	
 (3) Implementation	

comm2dsub	

commcol	

comm2dsub	

3.3x speedup
over SUMMA-PZ=1
without MPI_comm

setup costs	

4.7x speedup
over SUMMA-PZ=1
without MPI_comm

setup costs	

