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Motivation
Clustering in Big Data scenarios with millions to billions of data 
points requires specialized algorithms and efficient implementations

Sparse grid clustering uses a spatial discretization scheme that is 
suitable for higher-dimensional problems

For Big Data: linear complexity of density estimation in data points 

We present first scaling results on Piz Daint and show performance 
portability across accelerator architectures and processors

Sparse Grids Density Estimation
Spatial discretization with sparse grids mitigates the curse of 
dimensionality (up to 166 dimensions In practice) [1, 2]

With     data points and     grid points, the density estimation 
problem [3]   

with sparse grids function space                              leads to the 
system of linear equations (SLE) for coefficients 

 

     are hat basis functions at grid points, enumerated through   

Hierarchical 1d basis functions (left) and 3d grid of level 6 (right)

Linear dataset complexity: Dataset only used to calculate 

Clustering based on Sparse Grid Density Estimation
Clustering algorithm proposed by Peherstorfer [4]:

Search and return connected components as detected clusters
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Implementation Properties
System of linear equations solved via iterative solver (conjugate 
gradient), because matrix     is large:              

Necessitates a highly-optimized implementation of                 and 
calculation of components 

Implemented in OpenCL (4 kernels) to enable portability

Configurable optimizations (blocking, pipelining, local-memory, ...) and 
code generation for performance portability

Grid and dataset stored as arrays of d-dimensional tuples

Manager-worker scheme used for load balancing

Distributed Scaling

Scenario: 1M data points (left), 10M data points (right), 10 clusters, 
level 8 regular sparse grid, 1.8M grid points in 10d, strong scaling

On Cray XC50 Piz Daint, 1xTesla P100 per node

Linear scaling as long as enough work is available per P100

Linear complexity in     : observed for calculation of     (most expensive 
step) in 10d scenario with 2 nodes: 361s (1M) vs. 3635s (10M)

Performance Portability of Density Estimation

Scenario: 8 dim dataset with 1 million data points in 10 clusters, 
regular sparse grid with 580k grid points

Instruction mix limits performance to 66% of peak (69% on FirePro)

High register pressure limits performance on GPUs 

Future Work
Experiments with adaptive grids for dramatically reduced number of 
grid points

Improved grid point encoding for reduced register pressure on GPUs
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Device Name 8d (DP) Peak Fraction Peak Limit

Tesla P100 1.2TF 26% 39%

Tesla K20X 0.3TF 23% 35%

FirePro W8100 0.5TF 23% 33%

Xeon E7-8880v3,
4xSocket, 72C

1.1TF 50% 76%~f =argmin
B
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