
Directory/Cache API for Sharing Data in Distributed Memory Systems
Tiberiu Rotaru1, Bernd Lörwald1, Mirko Rahn1, Nick Brown2, Vicenç Beltran Querol3, Olivier Aumage4, Xavier Teruel3

www.intertwine-project.eu, @intertwine_eu. Project funded by the European

Commission. Grant agreement number: 671602.

1Fraunhofer ITWM, 2EPCC, 3Barcelona Supercomputing Center, 4INRIA

See us at booth #J-640

StarPU
The StarPU Runtime System provides a frame-
work for task scheduling on heterogeneous
platforms. It is capable to drive task-based ap-
plications over heterogeneous cluster nodes
equipped with nVidia CUDA devices, Intel
Xeon Phi devices and/or OpenCL accelerators.
StarPU keeps track of data replicates on dis-
crete accelerators and disposes of a data
prefetching engine to overlap transfers with
computation. StarPU uses self-tuned per-task
performance models for improving the sched-
uling quality of parallel linear algebra algo-
rithms. Instead of rewriting the entire code,
programmers encapsulate existing kernels
within codelets objects. Codelet may be en-
riched with additional kernel implementa-
tions for each supported architecture. StarPU
schedules the codelets as efficiently as possi-
ble over the entire machine, dynamically se-
lecting adequate implementations as execu-
tion unfolds. In order to relieve programmers
from the burden of explicit data transfers, a
high-level data management library enforces
memory coherency over the machine.

OmpSs
OmpSs is a task-based programming model

that aims to provide portability and flexibility

for sequential codes while the performance is

achieved by the dynamic exploitation of the

parallelism at task level. OmpSs targets the

programming of heterogeneous and multi-

core architectures and offers asynchronous

parallelism in the execution of tasks. The

runtime is able to schedule and run these

tasks, taking care of the required data trans-

fers and synchronizations. OmpSs is a promis-

ing programming model for future exascale

systems, with the potential to exploit unprec-

edented amounts of parallelism while coping

with memory latency, network latency and

load imbalance.

Directory/Cache Architecture

The directory/cache relies on a client-server architecture. The original data is stored in one or more segments across sev-

eral nodes and copies of global memory regions are stored in local caches. A local server may create and manage multiple

local caches. Multiple clients may connect to a local server and each client may attach to specific local caches that may be

shared between numerous clients. The clients can be either started within the same process as the corresponding local

server or in a distinct process. The second approach offers the advantage of supporting the coupling of external programs

with an already running directory/cache service. Moreover, running clients in different processes to the server makes the

directory/cache tolerant to client failures. The local servers coordinate with each other for carrying out operations with

memory ranges in a consistent way. This architecture is flexible and extensible, allowing adding in a straightforward man-

ner new segment implementations and specific extensions to the client interface. Primary clients for the directory/cache

are considered the task-based runtime systems, but applications may also directly use it.

Directory/Cache API
The directory/cache allows task-based runtime systems to efficiently run distribut-

ed applications, while being able to consistently manage data stored in distributed

memory and in local caches. The directory/cache API allows runtimes to be com-

pletely independent from the physical representation of data and from the type of

storage used, facilitating the access through the same interface to an extendable

list of memory segment implementations. Moreover, applications may also use

the directory/cache API directly.

Directory/Cache

GASPI
Segment

MPI
Segment

BeeGFS
Segment

…

OmpSs Runtime StarPU Runtime …

The API provides methods for creating and deleting segments, for creating and

deleting local caches and for allocating or deallocating memory for global data in

segments. The API allows performing operations with local and global ranges,

such as: allocating memory in caches, releasing data stored in caches, retrieving

read-only or modifiable copies of data from the global memory into a local cache

and transferring data from a local cache into the global memory. The API also

provides other operations with enriched semantics, such as tagged data transfers

and operations that atomically combine data transfers with cache releases. The

operations with ranges are asynchronous and facilitate keeping the cache coher-

ence and the global consistency of data, performing in background additional

bookkeeping operations related to managing data copies and their associated ref-

erence counters. For optimization purposes, the trusted clients may be granted

direct access to the segment memory when this is possible. The API provides

transfer costs associated with a list of operations and data locality information.

GASPI and MPI Segments

A segment is a continuous space of globally accessible memory which can be addressed in terms of offset of data.

Global Address Space Programming Interface (GASPI) is a Partitioned

Global Address Space API. GPI-2 is an implementation of the GASPI

standard. MPI is a standardized message-passing system for distribut-

ed-memory applications used in parallel computing.

The directory/cache is designed to work with an extendable list of seg-

ment types (GASPI, MPI, etc.) that can be used simultaneously. The

API provides a segment interface that all segment types should imple-

ment: low-level get and put methods for transferring data from/into

segments using the corresponding communication library (GPI-2, MPI library, etc), methods for getting the list of transfer

costs, the list of home nodes of a list of memory ranges and optionally, for getting direct access to the segment memory.

Global address space Programming Interface (GPI-2)

RAM RAM RAM RAM RAM

GLOBAL ADDRESS SPACE

THREADS

NUMA SYSTEM

THREADS

NUMA SYSTEM

THREADS

CO-PROCESSOR

RDMA INTERCONNECT

THREADS

CO-PROCESSOR

Abstract Data Representation
The end users only work with data abstractions in terms of local and global rang-
es, safely assuming that the data with which they interact is contiguous and line-
arly addressable. Local ranges are contiguous regions of memory allocated in local
caches. Global ranges are linear representations of global data distributed in seg-
ments.

Physical segment

Segment knowledge

Logical segment

Server knowledge

Allocation and global range

Server

GASPI,
MPI,
BeeGFS

Client

Original Data

Scratch Copies

Segment 0

Cache

Client

Client

Node 2 Node 1

Cache

Segment 0

Cache

Client

Client

Segment 1

Node 3

Cache

Segment 0

Cache

Client

Segment 1

Client

Node 0

Segment 0

Cache

Client

Segment 1

