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INTERTWinE: Programming model interoperability 
 Writing parallel codes is difficult, time consuming and the domain of a few experts 

 Numerous programming languages and models have been developed to counter this challenge, many of 

which specialise in specific paradigms such as task driven parallelism.  

 In order to reach exa-scale it is well accepted that we will need to address parallelism at many different lev-

els, which inevitably means the mixing of programming models.  

 INTERTWinE— Enabling scalable and efficient programming model interoperability 

Our challenge: Task based models are traditionally limited to a single memory space, how can we 

support these running over large scale distributed memory machines where a programmer’s code 

is transparently interoperating with these models and distributed technologies such as MPI? 

Directory/cache: Distributed memory interoperability 
 

 

 

 

 

 

 

 

 

Achieving this relies on two crucial concepts: 
Data directory: The programmer has a unified view of memory, whereas in reality it is split up into chunks 

which are distributed amongst the memory segments of different nodes. The directory tracks both what data is 

held where (known as the home node) and also versioning information. 

Cache: Each process has it’s own cache and, for performance reasons, remote data is transparently retrieved 

and then copied into the local cache before a pointer is returned and used in code like any normal local variable. 

Data in the cache is marked as either constant or mutable, cache coherence protocols ensure global consistency. 
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Programmer’s unified view of memory 

The programmer’s unified view of memory on the left is in fact 

physically made up of numerous distributed segments. 

Directory/cache: Abstracting the transport layer 
We do not intend the end programmer to interact directly with 

the directory/cache: 

 The runtimes of the higher level programming models sit 

on top of the directory cache layer.  

 These runtimes are independent of the physical distribut-

ed memory and technology (such as MPI RMA) used to 

support it.  

 

These higher level runtime technologies interoperate with distributed memory using the abstraction of a single, 

unified, address space. The directory/cache supports seamless integration with many transport layers such as 

MPI, GASPI and BeeGFS which follow a unified interface. 

Asynchronous requests are issued from the runtimes to the directory/cache which are served by the activation of 

threads from a pool. These requests can be tested for completion and waited upon.  
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How we implement this: MPI RMA as a transport layer 
 

MPI_Win_Rget(source, num_elements, MPI_BYTE, homeNode, offset, num_elements,  

                     MPI_BYTE, segment_window, &request); 

Cholesky matrix factorization benchmark 
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Cholesky factorization decomposes a matrix (A) into its  lower triangular 

matrix (L) and conjugate transpose (L*), where A=LL*. This has numer-

ous applications in computational science including the solving of linear 

systems, Monte Carlo simulations and matrix inversion. The blocks of 

the matrix are distributed via the columns between processes. 

 

This benchmark has been implemented using the directory/cache and 

compared against direct MPI RMA implementations 

 Experiments performed on ARCHER, a Cray XC30, using Cray’s im-

plementation of MPI and the GNU 6.3 compiler 

 Strong scaling, global size of 16384 by 16384 elements and a block 

size of 16 by 16 elements 

Step 1: Cholsky factorisation is 

performed for the current 

block, Ab=LbLb
*  

Step 2: Lrow=Arow(Lb)-1  is 

computed for each block in 

the current row 

Step 3: Update the rest of the blocks 

in the matrix with Arest=Arest-LrLr
* 

 The algorithm then proceeds to 

the next iteration & moves diago-

nally onto the block in the next row 

and next column, repeating the 

steps relative to this new position 

 

 

 

 

 

 

 

 

 

 

 

segment_id_t data_segment(segment_create(global_size,    

  mpi::equally_distributed_segment_description())); 

 

data_id_t matrix_data(allocate(global_size, data_segment); 

global_range_t global_range_toget={matrix_data,  

  offset_t(data_start), b * b * sizeof (double)}; 

 

const_local_range_t local_data=execute_sync( 

  get_const(global_range_toget, cache)); 

double * data = local_data.pointer(); 

………… 

 

execute_sync(release(local_data)); 

Create a segment on each process which will hold 

distributed blocks of the matrix for Cholesky 

Use MPI RMA as the 

transport layer 

Evenly distribute the data (of 

length global_size) amongst 

the segments  

Physically allocate some data (of length global_size) amongst 

the individual segments of data_segment driven by the seg-

ment type. This represents physically allocating the space for 

the distributed matrix blocks in this benchmark. 

Create a global range, it is 

transparent to the program-

mer if this spans multiple dis-

tributed memory spaces 

(segments) 

The range references some 

globally distributed data (via 

the id), starting offset and 

length 

Retrieve a read only copy 

of the data into the cache 

such as a matrix block 

held remotely for the 

Cholesky benchmark 

Get the direct memory 

pointer of this retrieved 

read only data 

Once processing is complete re-

lease the locally allocated cache 

memory 

Performance & scalability sits between MPI fences and locks. 

 The directory/cache is built on top of MPI RMA locks  and our lay-

er adds some additional overhead in managing locality and cache 

 But we present a higher level of abstraction to the programmer/

runtime, greater flexibility (one can easily modify aspects such as 

the decomposition of data by changing segment type) and in-

teroperability by using other transport layers seamlessly. 

Strong scaling experiments on ARCHER (XC30) 

Global size 16384*16384, block size 16*16 

Why choose MPI RMA as a transport layer? 

The ubiquity of MPI 

MPI’s generally good, predictable, performance and scalability 

The directory/cache memory model maps well to MPI RMA (passive target synchronisation)  

 

How do we utilise MPI RMA? 

 Each segment is represented by its own MPI window 

 Upon the initialisation of a segment, processes all issue MPI_Win_lock_all to start an access epoch with 

every other process in the window. The MPI_MODE_NOCHECK flag is used to avoid any consistency check-

ing in the MPI library for performance reasons as we handle this at the transport layer. 

 When a segment is destroyed the epoch is ended via MPI_Win_unlock_all and the window freed. 

 

With remote data retrieval, for instance, a non-blocking request based read (Rget) is issued: 

Retrieve 

num_elements 

bytes 

From the 

home node 

Starting at a 

specific offset 

The directory/cache’s calling thread will sleep via a 

condition variable, this context is stored in a C++ 

map keyed by the request handle 

A separate thread periodically checks for completion of all outstanding requests. It does this by extracting 

out the MPI request handles into a request_handles vector and tests for the completion of any of these. 

for (auto req : outstandingRMA) { 

    request_handles.push_back(req.first); 

    storedrequest_handles.push_back(req.first); 

} 

MPI_Test_some(num_requests, request_handles.data(),  

              num_completed, completed_indexes, ……); 

for (int i=0;i<num_completed;i++) { 

    auto it = outstandingRMA.find(storedrequest_handles[ 

                                   completed_indexes[i]]); 

    if (it != outstandingRMA.end()) { 

        it->second->activate(); 

        outstandingRMA.erase(it); 

    } 

} 

MPI_Test_some returns the number 

of completed requests and their in-

put array indexes, but  modifies 

completed requests handle to be 

MPI_REQUEST_NULL. Due to keying 

paused thread contexts by the MPI 

request, storedrequest_handles is 

also built and will remain unmodi-

fied during the Test_some. Complet-

ed request handles are retrieved 

from this vector to obtain the thread 

context from the outstandingRMA 

map for reactivation.  

By default MPICH’s asynchronous progress engine only checks for progress inside an MPI call (without helper 

threads.) The directory/cache sleeps rather than MPI barriers. We ensure that our thread issues MPI calls pe-

riodically by testing request handles, if there are no request handles to test then a dummy one is used. 

Memory segments 
Segments of memory are defined and physically distributed amongst the processes. Different memory spaces such 

as GPU memory, MCDRAM or memory hierarchies can be represented by different segments and interact seamless-

ly. An abstraction of memory ranges is provided for data retrieval & writing. These ranges represent some chunk of 

memory in a segment and transparently span over multiple physically distributed allocations. 
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