
MPI RMA as a directory/cache interoperability layer
Nick Brown (EPCC) ; Tiberiu Rotaru and Bernd Lörwald (Fraunhofer ITWM) ; Vicenç Beltran and Xavier Teruel (BSC) ; Olivier Aumage (INRIA)

INTERTWinE: Programming model interoperability
 Writing parallel codes is difficult, time consuming and the domain of a few experts

 Numerous programming languages and models have been developed to counter this challenge, many of

which specialise in specific paradigms such as task driven parallelism.

 In order to reach exa-scale it is well accepted that we will need to address parallelism at many different lev-

els, which inevitably means the mixing of programming models.

 INTERTWinE— Enabling scalable and efficient programming model interoperability

Our challenge: Task based models are traditionally limited to a single memory space, how can we

support these running over large scale distributed memory machines where a programmer’s code

is transparently interoperating with these models and distributed technologies such as MPI?

Directory/cache: Distributed memory interoperability

Achieving this relies on two crucial concepts:
Data directory: The programmer has a unified view of memory, whereas in reality it is split up into chunks

which are distributed amongst the memory segments of different nodes. The directory tracks both what data is

held where (known as the home node) and also versioning information.

Cache: Each process has it’s own cache and, for performance reasons, remote data is transparently retrieved

and then copied into the local cache before a pointer is returned and used in code like any normal local variable.

Data in the cache is marked as either constant or mutable, cache coherence protocols ensure global consistency.

Array A

Array B

Process 0 0x000000

0x02F000

Array A

Array B

Process 1 0x00AF00

0x0B2900

Array A

Array B

Process 2 0xA82000

0xC82000

Physical distribution of memory

0xFF0000

Process 0
Process 1
Process 2

Process 0
Process 1
Process 2

Array A

Array B

Programmer’s unified view of memory

The programmer’s unified view of memory on the left is in fact

physically made up of numerous distributed segments.

Directory/cache: Abstracting the transport layer
We do not intend the end programmer to interact directly with

the directory/cache:

 The runtimes of the higher level programming models sit

on top of the directory cache layer.

 These runtimes are independent of the physical distribut-

ed memory and technology (such as MPI RMA) used to

support it.

These higher level runtime technologies interoperate with distributed memory using the abstraction of a single,

unified, address space. The directory/cache supports seamless integration with many transport layers such as

MPI, GASPI and BeeGFS which follow a unified interface.

Asynchronous requests are issued from the runtimes to the directory/cache which are served by the activation of

threads from a pool. These requests can be tested for completion and waited upon.

OmpSs StarPU Others

Directory/cache

GASPI MPI …..

How we implement this: MPI RMA as a transport layer

MPI_Win_Rget(source, num_elements, MPI_BYTE, homeNode, offset, num_elements,

 MPI_BYTE, segment_window, &request);

Cholesky matrix factorization benchmark

Step 1 Step 2 Step 2 Step 2 Step 2 Step 2

Step 3 Step 3 Step 3 Step 3 Step 3

Step 3 Step 3 Step 3 Step 3

Step 3 Step 3 Step 3

Step 3 Step 3

Step 3

Start here

iteration 4

Start here

iteration 5

Start here

iteration 6

Start here

iteration 3

Start here

iteration 2

Start here

iteration 1

Cholesky factorization decomposes a matrix (A) into its lower triangular

matrix (L) and conjugate transpose (L*), where A=LL*. This has numer-

ous applications in computational science including the solving of linear

systems, Monte Carlo simulations and matrix inversion. The blocks of

the matrix are distributed via the columns between processes.

This benchmark has been implemented using the directory/cache and

compared against direct MPI RMA implementations

 Experiments performed on ARCHER, a Cray XC30, using Cray’s im-

plementation of MPI and the GNU 6.3 compiler

 Strong scaling, global size of 16384 by 16384 elements and a block

size of 16 by 16 elements

Step 1: Cholsky factorisation is

performed for the current

block, Ab=LbLb
*

Step 2: Lrow=Arow(Lb)-1 is

computed for each block in

the current row

Step 3: Update the rest of the blocks

in the matrix with Arest=Arest-LrLr
*

 The algorithm then proceeds to

the next iteration & moves diago-

nally onto the block in the next row

and next column, repeating the

steps relative to this new position

segment_id_t data_segment(segment_create(global_size,

 mpi::equally_distributed_segment_description()));

data_id_t matrix_data(allocate(global_size, data_segment);

global_range_t global_range_toget={matrix_data,

 offset_t(data_start), b * b * sizeof (double)};

const_local_range_t local_data=execute_sync(

 get_const(global_range_toget, cache));

double * data = local_data.pointer();

…………

execute_sync(release(local_data));

Create a segment on each process which will hold

distributed blocks of the matrix for Cholesky

Use MPI RMA as the

transport layer

Evenly distribute the data (of

length global_size) amongst

the segments

Physically allocate some data (of length global_size) amongst

the individual segments of data_segment driven by the seg-

ment type. This represents physically allocating the space for

the distributed matrix blocks in this benchmark.

Create a global range, it is

transparent to the program-

mer if this spans multiple dis-

tributed memory spaces

(segments)

The range references some

globally distributed data (via

the id), starting offset and

length

Retrieve a read only copy

of the data into the cache

such as a matrix block

held remotely for the

Cholesky benchmark

Get the direct memory

pointer of this retrieved

read only data

Once processing is complete re-

lease the locally allocated cache

memory

Performance & scalability sits between MPI fences and locks.

 The directory/cache is built on top of MPI RMA locks and our lay-

er adds some additional overhead in managing locality and cache

 But we present a higher level of abstraction to the programmer/

runtime, greater flexibility (one can easily modify aspects such as

the decomposition of data by changing segment type) and in-

teroperability by using other transport layers seamlessly.

Strong scaling experiments on ARCHER (XC30)

Global size 16384*16384, block size 16*16

Why choose MPI RMA as a transport layer?

The ubiquity of MPI

MPI’s generally good, predictable, performance and scalability

The directory/cache memory model maps well to MPI RMA (passive target synchronisation)

How do we utilise MPI RMA?

 Each segment is represented by its own MPI window

 Upon the initialisation of a segment, processes all issue MPI_Win_lock_all to start an access epoch with

every other process in the window. The MPI_MODE_NOCHECK flag is used to avoid any consistency check-

ing in the MPI library for performance reasons as we handle this at the transport layer.

 When a segment is destroyed the epoch is ended via MPI_Win_unlock_all and the window freed.

With remote data retrieval, for instance, a non-blocking request based read (Rget) is issued:

Retrieve

num_elements

bytes

From the

home node

Starting at a

specific offset

The directory/cache’s calling thread will sleep via a

condition variable, this context is stored in a C++

map keyed by the request handle

A separate thread periodically checks for completion of all outstanding requests. It does this by extracting

out the MPI request handles into a request_handles vector and tests for the completion of any of these.

for (auto req : outstandingRMA) {

 request_handles.push_back(req.first);

 storedrequest_handles.push_back(req.first);

}

MPI_Test_some(num_requests, request_handles.data(),

 num_completed, completed_indexes, ……);

for (int i=0;i<num_completed;i++) {

 auto it = outstandingRMA.find(storedrequest_handles[

 completed_indexes[i]]);

 if (it != outstandingRMA.end()) {

 it->second->activate();

 outstandingRMA.erase(it);

 }

}

MPI_Test_some returns the number

of completed requests and their in-

put array indexes, but modifies

completed requests handle to be

MPI_REQUEST_NULL. Due to keying

paused thread contexts by the MPI

request, storedrequest_handles is

also built and will remain unmodi-

fied during the Test_some. Complet-

ed request handles are retrieved

from this vector to obtain the thread

context from the outstandingRMA

map for reactivation.

By default MPICH’s asynchronous progress engine only checks for progress inside an MPI call (without helper

threads.) The directory/cache sleeps rather than MPI barriers. We ensure that our thread issues MPI calls pe-

riodically by testing request handles, if there are no request handles to test then a dummy one is used.

Memory segments
Segments of memory are defined and physically distributed amongst the processes. Different memory spaces such

as GPU memory, MCDRAM or memory hierarchies can be represented by different segments and interact seamless-

ly. An abstraction of memory ranges is provided for data retrieval & writing. These ranges represent some chunk of

memory in a segment and transparently span over multiple physically distributed allocations.

www.intertwine-project.eu

@intertwine_eu

INTERTWinE is funded by the EC

Grant agreement number 671602

