
Decoupling the Selection of Compression Algorithms from
Required Precision with the Scientific Compression Library (SCIL)

Julian Kunkel1 <kunkel@dkrz.de>, Anastasiia Novikova2, Eugen Betke1, Armin Schaare2

1 Deutsches Klimarechenzentrum (DKRZ) 2 Universität Hamburg

Please see our standardization effort: https://www.vi4io.org/std/compression

ABSTRACT
Data intense scientific domains use data com-
pression to reduce the storage space needed.
Lossless data compression preserves the orig-
inal information accurately but usually yields
a compression ratio of 2:1. Lossy data com-
pression can achieve much higher compression
rates depending on the tolerable error/precision
needed. Therefore, the field of lossy compres-
sion is still subject to active research. From the
perspective of a scientist, the actual algorithm
does not matter but the qualitative information
about the implied loss of precision of data is the
main concern.

With the Scientific Compression Library (SCIL),
we are developing a meta-compressor that al-
lows users to set various quantities that define
the acceptable error and the expected perfor-
mance behavior. The library then chooses the ap-
propriate chain of algorithms to yield the users
requirements. This approach is a crucial step to-
wards a scientifically safe use of much-needed
lossy data compression, because it disentangles
the tasks of determining scientific ground char-
acteristics of tolerable noise, from the task of
determining an optimal compression strategy
given target noise levels and constraints. With-
out changing applications, it allows these codes
to utilize future algorithms once they are inte-
grated into the library.

Contributions of this poster are:

1. Introduction of quantities for acceptable
tolerance and performance

2. The analysis of (lossless) compression for
climate data (and two new algorithms)

The current version of the library is publicly
available under LGPL license:
https://github.com/JulianKunkel/scil

SUPPORTED QUANTITIES

SCIL supports to define the tolerable error on
data and the expected performance behavior.

Quantities defining the residual (error):

• absolute tolerance: compressed can be-
come true value ± absolute tolerance

• relative tolerance: percentage the com-
pressed value can deviate from true value

• relative error finest tolerance: value
definining the absolute tolerable error for
relative compression for values around 0

• significant digits: number of significant
decimal digits

• significant bits: number of significant dec-
imals in bits

Defining the performance behavior can be de-
fined for compression and decompression. Each
value can be defined according to:

• absolute throughput in MiB or GiB
• relative to network or storage speed

To allow setting these values, the system’s per-
formance must be trained initially.

TOLERANCE-BASED RESULTS
The graphs show the mean compression factor
for all scientific data files varying the precision
for the algorithms ZFP, SZ, SIGBITS (keeps the
exponent and significant bits from the mantissa)
and ABSTOL (tolerance set to % of the max value
in a data set). An optional LZ4 stage increases
compression for ABSTOL and SIGBITS.

Mean is computed based on the sum of the data size,
e.g., after compression a factor of 50:1 means all occu-
pied space is reduced to 2% of the original size.

ARCHITECTURE AND STATUS OF SCIL
SCIL is implemented in C and utilizes existing compression libraries and tools such as LZ4, ZFP, and
SZ. There is a prototypical integration into HDF5 and NetCDF available. The implementation for the
automatic algorithm selection is ongoing effort.
Compression chain. A chain of algorithms can be constructed that is processed internally. Based on
the basic datatype that is supplied, the initial stage of the chain is entered. For floating point data and
integer data, preconditioners or a final LZ4 step can be supplied. Intermediate steps can be skipped.

Array of
Type-To-Type

Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer

Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compressed
data

process data process data

float float int any any

data

Tools. SCIL comes with additional tools useful for the evaluation:

• Creating several relevant multi-dimensional data patterns of any size
• Adding random noise based on the hint set to existing data
• To evaluate compression on existing CSV and NetCDF data files

EXAMPLE API USAGE
A very simple example for C:

include < s c i l . h>

i n t main () {
double data [1 0 , 2 0] ; / / our raw data , we assume i t c o n t a i n s s t h . u s e f u l

/ / d e f i n e t h e q u a n t i t i e s a s u s e r h i n t s , a l l s p e c i f i e d c o n d i t i o n s w i l l h o l d
s c i l _ u s e r _ h i n t s _ t h i n t s ;
h i n t s . r e l a t i v e _ t o l e r a n c e _ p e r c e n t = 1 0 ;
h i n t s . a b s o l u t e _ t o l e r a n c e = 0 . 5 ;
h i n t s . s i g n i f i c a n t _ d i g i t s = 2 ;
/ / d e f i n e permformance l i m i t on d e c o m p r e s s i o n s p e e d
h i n t s . decomp_speed . uni t = SCIL_PERFORMANCE_GIB ;
h i n t s . decomp_speed . m u l t i p l i e r = 3 . 5 ;
/ / . . . add more i f d e s i r e d
/ / c r e a t e a c o m p r e s s i o n c o n t e x t f o r a g i v e n d a t a t y p e
s c i l _ c o n t e x t _ t * c t x ;
s c i l _ c r e a t e _ c o n t e x t (& ctx , SCIL_TYPE_DOUBLE , 0 , NULL, &h i n t s) ;

/ / t h e mult i−d i m e n s i o n a l s i z e o f t h e data , h e r e 10 x20
s c i l _ d i m s _ t dims ; s c i l _ i n i t i a l i z e _ d i m s _ 2 d (& dims , 10 , 2 0) ;

s i z e _ t b u f f e r _ s i z e = s c i l P r _ g e t _ c o m p r e s s e d _ d a t a _ s i z e _ l i m i t (& dims , SCIL_TYPE_DOUBLE) ;
byte * compressed_data = malloc (b u f f e r _ s i z e) ;

s i z e compr_size ; / / t h e amount o f d a t a c o m p r e s s e d
sc i l_compress (compressed_data , b u f f e r _ s i z e , data , &dims , & compr_size , c t x) ;
/ / now do someth ing with t h e d a t a in c o m p r e s s e d _ d a t a / s i z e a c c o r d i n g t o c o m p r _ s i z e
. . .

RESULTS FOR ABSOLUTE TOLERANCE
Comparing algorithms using an absolute tolerance of 1% of the maximum value:

The synthetic random patterns can serve as baseline to understand the benefit of the lossy compres-
sion. For abstol, a random pattern yields a factor of 4.3:1. Arithmetic mean (ratio, throughput MiB/s)

Algorithm Ratio Compr. Decomp.
abstol 0.19 260 456
abstol,lz4 0.062 196 400
sz 0.078 81 169
zfp-abstol 0.239 185 301

Table 1: For ECHAM data files

Algorithm Ratio Compr. Decomp.
abstol 0.194 265 482
abstol,lz4 0.151 226 456
sz 0.165 74 147
zfp-abstol 0.295 161 266

Table 2: For 5 different random patterns

RESULTS FOR PRECISION BITS
Comparing algorithms using 9 precision bits for the mantissa. Note that due to a different understand-
ing of “precision” from ZFP (it defines the number of bits to retain in total), the number for ZFP has been set to
be equal to the necessary bits for the exponent and the mantissa in the sigbits algorithm. The achieved precision
of ZFP does mostly not hold the defined precision, still the results of sigbits is often better.

The synthetic random patterns can serve as baseline to understand the benefit of the lossy compres-
sion. For the new algorithm sigbits, a random pattern yields a factor of 2.6:1. Arithmetic mean (ratio,
throughput in MiB/s):

Algorithm Ratio Compr. Decomp.
sigbits 0.448 462 615
sigbits,lz4 0.228 227 479
zfp-precision 0.299 155 252

Table 3: For ECHAM data files

Algorithm Ratio Compr. Decomp.
sigbits 0.369 528 672
sigbits,lz4 0.304 466 599
zfp-precision 0.232 175 314

Table 4: For 5 different random patterns

TEST SYSTEM
The characteristics of the test system are:

• Intel i7-6700 CPU (Skylake)
• 4 cores @ 3.40GHz (only 1 used)

EXPERIMENTS
For each test data (CSV or NetCDF format), the
following setups are run:

• Lossless compression

– Algorithms: memcopy and lz4

• Lossy compression with significant bits

– Tolerance: 3, 6, 9, 15, 20 bits
– Algorithms: zfp, sigbits, sigbits+lz4

• Lossy compression with absolute tolerance

– Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of
the data maximum value

– Algorithms: zfp, sz, abstol, abstol+lz4

In the test, one thread of the system is used for
the compression/decompression. A configura-
tion is run 10x measuring compr/decompres-
sion time and compression ratio.

TEST DATA
The pool of (double precision floating point) test
data is build upon:

• Synthetic, generated by SCIL’s pattern lib.

– e.g., Random, Steps, Sinus, Simplex

• Data of the variables created by ECHAM

– The climate model creates 123 vars

Example synthetic data: simplex 206 in 2D

Compressed with Sigbits 3bits (ratio 11.3:1)

SUMMARY
This poster provides first results for SCIL and
compares novel algorithms implemented with
the state-of-the-art compressors. It shows that
these algorithms can compete with ZFP/SZ
when setting the absolute tolerance or precision
bits. In some cases, SZ compresses better than
abstol. Since SCIL aims to choose the best algo-
rithm, it can take benefit of both algorithms.

Ongoing (future) work:
• A single algorithm honoring all quantities
• Automatic choose for the fitting algorithm

ACKNOWLEDGEMENTS
This work was supported in part by the German Re-
search Foundation (DFG) through the Priority Pro-
gramme 1648 “Software for Exascale Computing”
(SPPEXA) (GZ: LU 1353/11-1).

We thank Luis Kornblüh from the Max Planck Insti-
tute for Meteorology for providing the ECHAM6 data.

