
Optimizing Massive Data Access
for Large Scale Population Genomics Analysis Using HDF5
Junrong Yang1#, Peihao Liu2#, Guixin Guo3, Hanquan Liang3, Wei Yan3, Bingqiang Wang3*, Yunfei Du3 , Shoubin Dong1

#Equal contributor *Corresponding author

1.South China University of Technology

2.National University of Defense Technology

3.National Supercomputer Center in Guangzhou, Sun Yat-sen University

Background
Over the last decade, DNA sequencing cost is reduced by orders of magnitudes, more scientific researches in life sciences and clinical diagnosis are relying

heavily on sequencing technology nowadays. Population genetics studies analyze a large group of samples together to decipher genomes with unprecedented

resolution. Supercomputer is the right choice for such extreme scale analysis up to millions of individuals. Current population analysis, such as variant identification

and imputation analysis, first perform pre-analysis on a subset for each sample, then pooled the results together for a secondary analysis.

However, population genomics analysis is data intensive computing featuring high throughput. There is a gap between current population analysis pipelines

(software) and supercomputer systems (hardware) in terms of compute to data access ratio.

Problem

Acknowledgements
This work is supported by National Natural Science Foundation of China, Grant No. U1611261.

 Data organization
 One or several files per sample, storing data

corresponding to chromosome 1 to Y, taking
human genome as example.

File example stores all records of a sample

Data access pattern in genotype imputation

 Assuming n samples and m jobs

 O(n) file accesses per job (open/close, seek and read)

 O(mn) file accesses total for m jobs

 In our real case, typically hundreds of jobs (m=100)

and hundreds of thousands of samples

(n=100,000)

 Massive file operations per job (orders of 100,000)

 A burst of metadata requests (orders of

10,000,000 in a short time)

Proposed Solution

 Key ideas
 Using HDF5 as container to reduce total number of

files, and supporting parallel access

 Fully exploit built-in hierarchical data storage

infrastructure: blocking/indexing and compression

 Carefully designed data layout schema to minimize

overhead and enable efficient access

Improved access pattern with HDF5 as container

Experiment & Results

Conclusion

Experiment
 Dataset

Only Chromosome 1 is selected for testing.
 Original data for all chromosomes are kept in 2,000 CRAM files with

a total size of 560 GB (approximately 44GB for Chromosome 1).
 One HDF5 file containing Chromosome 1 only, with a size of 122 GB.

 Methodology
 Each job reads data of a specific region for a given number of

samples. Timing is only for data access, without extra processing.

 Testbed
 Testbed1: 50 compute nodes from Tianhe-2 supercomputer system,

each with 24 cores CPU, 64GB RAM, Lustre file system. 50 jobs
runs in parallel, each with 24 threads to load data.

 Testbed2: Fat node with 128 cores, 6TB RAM, memory file system.
50 jobs are submitted, but only 5 jobs each with 24 threads are
executed in parallel at the same time.

Results

Abstract
More and more DNA sequencing data are generated, which enables population scale modeling for both scientific and clinical purposes. The traditional plain organization and layout of these data don’t fit well with

large scale analysis. Genotype imputation needs to analyze the same genome region of all individuals, thus small partial data of a large amount of files are used. Such kind of data access brings significant pressure to

the parallel file system. To tackle this, HDF5 file format is employed as kind of container for these raw data files. Naturally one single HDF5 file corresponds to a human chromosome, inside the HDF5 file two layouts

are proposed and tested. The first one is one-dimensional, data distributed as different individuals/samples. The second one is two-dimensional, data distributed along both fixed size regions and different

individuals/samples. Our experiment shows that both layouts gain significant improvement, 3.4x speedup is observed. And two-dimensional layout performs even better because the feasibility to locate a certain region.

It is clear that our work solves the metadata congestion, thus improves in data access performance.

 Access pattern
 Open and seek

operations over all

samples’ relevant

files per compute job

 Only a small region

of data for an

individual is loaded

per compute job

In our genotype imputation case, every 5 million

continuous genetic loci correspond to a region.

 O(1) file accesses per job

 O(m) file accesses total for m jobs

Tier-0 partitioning reduces unnecessary metadata

access and pressure on the metadata server. Proper

layout of data can further reduce internal access

complexity inside HDF5 infrastructure.

 Layout Design
 Multi-level partitioning

 Layout1: One dimension: samples

Data is kept in a single dataset in order of samples.

 Layout2: Two dimensions: regions + samples

Data of a specific region of all samples is kept in a

standalone dataset in order of samples.
Layout1: One dimension: samples

Layout2: Two dimensions: regions and samples

 Tier-0 partitioning of data is based on chromosome.

Naturally a single HDF5 file keeps all data

belonging to same chromosome of all samples,

totally 23 HDF5 files for human data.

23 HDF5 files keeping human data (22+1 chromosomes)

The results show that for parallel file system like

Lustre, our new approaches, especially two-

dimensional layout, enable scalable analysis for

thousands of samples, and preserve the potential

towards massive scale analysis. By designing new

layouts optimized for such kind of analysis, significant

performance improvement is achieved in data access

stage, which is critical for such data intensive

applications.

For testbed1, comparing with original method,

Layout1 and Layout2 perform very well and have

higher throughput when the number of samples

increases. Layout2 has sustainable advantages

increasing more samples, and works slightly better

than Layout1 because it can reach block borders

directly while Layout1 needs extra search. Original

method has relatively high throughput due to data of

redundant fields. Both Layout1 and Layout2 reduce

metadata congestion for parallel file system, and

bring smooth user experience.

For testbed2, results reflect the software overhead.

Layout2 has higher speedup and throughput, which

reveals the benefits of our new approach. Layout2

performs better than Layout1 as the reasons

mentioned above. Layout1 shows slightly lower

speedup and throughput when the number of

samples increases, which is relevant to higher
software overhead.

 Blocking and indexing

For Layout1 a block is defined as dataset for an

individual sample. For Layout2, a block is defined as

dataset for a given region at an individual sample,

each block contains multiple records corresponding

to 5M genetic loci region.

Index facilitates locating required set of data

records. Layout1: two-dimensional indices built at an

interval of 16k records per sample. Layout2: similar to

Layout1, but indices built according to block border.

 Compression

Data kept in text format without redundant fields

(fields filtered out comparing with original dataset).

Fast blosc compression is employed to reduce data

volume.

 Improved access

