
1 Profiling and Instrumentation

2 Data Classification

What is the difference?

Naive Schedule Smart Schedule

L3 Miss Ratio L3 Miss Ratio

X

Naive Average Smart Average

X

X

3 Analysis Over Time

TaskInsight: What, When and Why?2

How does memory affect performance of tasks?
Germán Ceballos, Andra Hugo, David Black-Schaffer

firstname.lastname@it.uu.se

Department of Information Technology

Different schedules for the same task-based application (e.g. Cholesky Factorization)

Executions show up to 30% performance difference!

Scheduling affects memory behaviour of the application.

Schedules affect memory behaviour and performance up to 30%.

Current tools rely on programmers intuition, don’t help to understand.

TaskInsight exposes effects of scheduling on memory and performance
 and can be used to produce better schedules.

Problem: Different schedules, different performance1

Conclusion3

new-data

2nd-last

last

older

Poor
Performance

Maximum
Performance

Naive Schedule Smart Schedule

1.6X
Better

Performance

46%
Less L3 Misses

Step 2: After running the application, memory reuses are identified across tasks.
Later, each memory access collected is classified depending on the type of reuse:

Tasks in Naive Schedule miss 46% more in the last level cache.

Smart Schedule has 1.6x better performance due to better cache reuse.

Different schedules result on different memory behaviour.

RuntimePIN

Hardware

Data
Classification

Analysis
Over Time

Runtime

Hardware LIB

Schedule A Schedule A

Memory
Accesses

100%

50%

0%

100%

50%

0%

0,6

0,4

0,2

0,0

0,6

0,4

0,2

0,0

D
at

a
C

la
ss

ifi
ca

tio
n

C
PI

L3
 M

R
D

at
a

C
la

ss
ifi

ca
tio

n
C

PI
L3

 M
R

N
A

IV
E

SC
H

ED
U

LE
SM

A
RT

 S
C

H
ED

U
LE

Time (Tasks)
Co-running sets: The execution is represented as a sequences of sets of tasks running in parallel. E.g. The 86th co-running set comprises tasks 324, 430, 492 and 619 in the naive schedule.

Step 3: Data classification (Step 2) is correlated with information from hardware performance counters and displayed over time.
By doing this, TaskInsight can expose if changes in memory behaviour had an impact in performance, when and why.

New data: first time the memory address is accessed.

Last reuse: The memory address was used by the previously executed task.

2nd-last reuse: The address was used by the second-to-last task.

Older reuse: The memory address was used before.

This classification is displayed over time during the data analysis step, and
connected with performance information captured from hw peformance counters.

 How can we understand why memory affected performance?

Step 1: The application is executed twice with the same schedule.
 (1A) In the first execution memory accesses are saved using a PIN-based tool.
 (1B) In the second execution, hardware performance counters are read using library calls.

For multi-threaded executions, results are aggregated by co-running sets: the set of tasks running at the same time.
We ignore runtime noise by guiding the profiling/instrumentation with the start and end of each task.

T 31

C0

C1

C3

C4

Task 7

T 45

T 12

T 23

T 13 T 16

T 10

T 44T 30

Task 8 Task 26

Co-running
sets { } 7, 45

12, 23 { } 8, 30
13, 31 { } 26,44,

16,10

Worst performance (peak)
What happens here?

When does this happen?
Co-running set 88: Tasks 324, 430, 492 and 619

New data fills the shared cache, application starts missing more in the cache

Tasks 324 is executed in set #42 in the smart schedule, has 26% better
performance and 80% less cache misses than in naive. Why?

Why did the schedule affect performance?
In smart, Task 324 is executed with tasks that have a dataset 24% smaller.

TaskInsight shows performance differences (what) on the same tasks
 across schedules, when this happened, and why.

Task A Task B Task CCore Task D

Time

Time

Cycles A
Instructions A

Cache Misses A

Cycles D
Instr D

Misses D

Task start
(start profiling)

Task end (stop profiling)
Runtime noise

(excluded)

Memory Access

First execution
Profiling

Second execution
Instrumentation

Read Performance Counters
at these points

Pe
rfo

rm
an

ce
 (C

PI
)

Pe
rfo

rm
an

ce
 (C

PI
)

Faster

Slower

Tasks

Execution Order

Data Reuse

WHY??

Application

Multi-threaded Execution:

Last level cache results are
aggregated by co-running sets.

(1B) Instrumentation(1A) Profiling

Hardware
Performance

Counters

