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Challenges for modern MD codes

Molecular Dynamics (MD) codes predict the physical properties of matter by simulating
a large number of interacting particles. To make accurate predictions, models need to
run efficiently on massively parallel computers and manycore chips.

This creates several challenges:

e diversifying hardware landscape
e parallelisation/optimisation often inseparable from science code
e growing data volumes, (post-) processing (=structure analysis) often sequential
e development of efficient code requires diverse range of skills:
1. domain specific knowledge (physics/chemistry)
2. parallel programming & optimisation on CPUs, GPUs, Xeon Phi,...
= significant manpower required
= rare for an individual to possess all those skills
= rewrite code for each new hardware platform

Our design principle: “separation of concerns” between
domain specialist and computational scientist
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e Python code generation framework for Molecular Dynamics Simulations
¢ algorithms (timestepping, thermostats,...) expressed at high abstraction level
® computationally expensive loops over particles and particle
pairs are realised as auto-generated C-code
® domain specialist only has to write Python algorithm and
local particle- (pair-) kernels E
® particle properties with access descriptors determine required 5
parallel operations outside kernel call (compare PyOP2 [1]
for grid-based PDE solvers)
¢ flexibility and convenience of high-level language
combined with performance of compiled code

Key idea & abstraction
fundamental operation in MD codes:
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for all particle pairs (i,j):
execute user-defined kernel

® pair looping hardware dependent (neighbour-list, layer algorithm, ...)
* includes non-force calculation (local analysis kernels)
e fundamental data structures:

1. particle properties (mass, position, velocity,...)

2. global properties (total energy, RDF, ...)

source code
https://bitbucket.org/wrs20/ppmd
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Results | strong scaling/comparison to monolithic MD codes

compare to LAMMPS, DL_POLY
Lennard-Jones benchmark
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Results Il structure analysis
® | J-run with bond angle analysis (BOA) [3]
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* Common neighbour analysis (CNA) [4] in
post processing stage
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- DLPOLY classify pairs by triplet (Nno,Nb,Nicb): F

1. # common neighbours

2. # neighbour links

3. neighbour cluster size
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weak scaling
Lennard-Jones with on-the-fly BOA
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