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Challenges for modern MD codes

Python code generation system

Key idea & abstraction 
fundamental operation in MD codes:

Example code
Data structures & execution model

• diversifying hardware landscape 
• parallelisation/optimisation often inseparable from science code 
• growing data volumes, (post-) processing (=structure analysis) often sequential 
• development of efficient code requires diverse range of skills: 

1. domain specific knowledge (physics/chemistry) 
2. parallel programming & optimisation on CPUs, GPUs, Xeon Phi,… 

➡ significant manpower required 
➡ rare for an individual to possess all those skills 
➡ rewrite code for each new hardware platform

Molecular Dynamics (MD) codes predict the physical properties of matter by simulating 
a large number of interacting particles. To make accurate predictions, models need to 
run efficiently on massively parallel computers and manycore chips. 

This creates several challenges:

Our design principle: “separation of concerns” between 
domain specialist and computational scientist

• pair looping hardware dependent (neighbour-list, layer algorithm, …) 
• includes non-force calculation (local analysis kernels) 
• fundamental data structures: 

1. particle properties (mass, position, velocity,…) 
2. global properties (total energy, RDF, …) 

➠  Separate algorithm and kernel from parallel loop over pairs

for all particle pairs (i,j):
execute user-defined kernel

domain
specialist

computational
scientist

dim=3 # dimension
npart=1000 # number of particles

# Define Particle Dats
a = ParticleDat(npart=npart, ncomp=dim)
b = ParticleDat(ncomp=1,npart=npart, initial_value=0.0)
S = ScalarArray(ncomp=1,initial_value=0.0)
               
kernel_code='''
  double da_sq = 0.0;
  for (int r=0;r<dim;++r) {
    double da = a.i[r]-a.j[r]; da_sq += da*da;
  }
  b.i[0] += da_sq; S += da_sq*da_sq;
'''

# Define constants passed to kernel
consts = (Constant('dim', dim),)     

# Define kernel
kernel = Kernel('update',kernel_code,consts)
  
# Define and execute pair loop
pair_loop = PairLoop(kernel=kernel, {'a':a(access.READ),
                                     'b':b(access.INC),
                                     'S':S(access.INC)})
pair_loop.execute()
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Given particle property a, calculate particle 
property b and global property Sg according to:

Results I strong scaling/comparison to monolithic MD codes
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Particle properties (mass, position, velocity) 
• stored in a numpy array wrapped in a Python 

ParticleDat object 
• r-th component of property a for particle pair (i,j) 

accessible as a.i[r] and a.j[r] in C-kernel 
• storage on host or device memory, access marks data as 

dirty (for halo exchanges) and/or triggers copies between  
host and device 

• global properties (total energy, RDF) stored as 
ScalarArray objects 

Particle pair loops
• executes C-kernel over all particle pairs (i,j) 
• access descriptors trigger halo exchanges, if necessary 
• C-code for pair-looping on a particular architecture is 

auto-generated and  
kernel inlined 

• currently support for 
MPI, CUDA, 
MPI+CUDA 

• particle list, 
neighbour-list, 
neighbour-matrix

a.i[r] (read)

b.i[0] (write)

a.j[r] (read)

property a

property b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

8
21

4

2 1

kernel

24

3

global property S (write)

• compare to LAMMPS, DL_POLY 
• Lennard-Jones benchmark 
• 1 million atoms 
• Kepler K20X GPU & Intel Xeon 

E5-2650v2 CPU (Ivybridge) 
• 64 CPU nodes (1024 cores)

Results II structure analysis
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weak scaling 
Lennard-Jones with on-the-fly BOA

• LJ-run with bond angle analysis (BOA) [3] 

• Common neighbour analysis (CNA) [4] in 
post processing stage

classify pairs by triplet (nnb,nb,nlcb): 
1. # common neighbours 
2. # neighbour links 
3. neighbour cluster size

                                   source code       
https://bitbucket.org/wrs20/ppmd

• Python code generation framework for Molecular Dynamics Simulations 
• algorithms (timestepping, thermostats,…) expressed at high abstraction level 
• computationally expensive loops over particles and particle 

pairs are realised as auto-generated C-code 
• domain specialist only has to write Python algorithm and  

local particle- (pair-) kernels 
• particle properties with access descriptors determine required  

parallel operations outside kernel call (compare PyOP2 [1]  
for grid-based PDE solvers) 

• flexibility and convenience of high-level language  
combined with performance of compiled code
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total performance % of peak % of time

16 core Intel Xeon (333 GFLOPs) 16.5% 54.8%

nVidia K20X GPU (1310 GFLOPs) 11.9% 36.9%

DSL

Framework

Hardware

➠ suitable abstraction?

https://bitbucket.org/wrs20/ppmd

