
William Robert Saunders, James Grant, Eike Hermann Müller* University of Bath, United Kingdom * poster presenter

A Domain Specific Language for Performance Portable Molecular Simulations

CPU CPU CPU

CPU CPU CPU
GPU

Framework (code generation system)

Kernel (C)

Kernel (C)

Kernel (C)

Algorithm
(Python)

uses

auto-generated
CPU+MPI code (C)

auto-generated
GPU code (C)

generates

execute

...

?

Do
m

ai
n

sp
ec

ia
lis

t
Co

m
pu

ta
tio

na
l

sc
ie

nt
is

t

1
16

4
16

8
16 1 2 4 8 16 32 64

Node/GPU count

101

102

103

104

In
te

gr
at

io
n

ti
m

e
(s

)

1 K20x

4 K20x

8 K20x

Framework

Framework K20x

LAMMPS K20x

LAMMPS

DL POLY

1.0 · 10
6

6.2 · 10
4

7.8 · 10
3

9.8 · 10
2

Number of particles per CPU core

1
16

4
16

8
16 1 2 4 8 16 32 64

Node/GPU count

0

20

40

60

80

100

120

140

P
ar

al
le

l
e�

ci
en

cy
(%

)

1 K20x

4 K20x

8 K20x
Framework

Framework K20x

LAMMPS K20x

LAMMPS

DL POLY

1.0 · 10
6

6.2 · 10
4

7.8 · 10
3

9.8 · 10
2

Number of particles per CPU core

Challenges for modern MD codes

Python code generation system

Key idea & abstraction 
fundamental operation in MD codes:

Example code
Data structures & execution model

• diversifying hardware landscape
• parallelisation/optimisation often inseparable from science code
• growing data volumes, (post-) processing (=structure analysis) often sequential
• development of efficient code requires diverse range of skills:

1. domain specific knowledge (physics/chemistry)
2. parallel programming & optimisation on CPUs, GPUs, Xeon Phi,…

➡ significant manpower required
➡ rare for an individual to possess all those skills
➡ rewrite code for each new hardware platform

Molecular Dynamics (MD) codes predict the physical properties of matter by simulating
a large number of interacting particles. To make accurate predictions, models need to
run efficiently on massively parallel computers and manycore chips.

This creates several challenges:

Our design principle: “separation of concerns” between
domain specialist and computational scientist

• pair looping hardware dependent (neighbour-list, layer algorithm, …)
• includes non-force calculation (local analysis kernels)
• fundamental data structures:

1. particle properties (mass, position, velocity,…)
2. global properties (total energy, RDF, …)

➠ Separate algorithm and kernel from parallel loop over pairs

for all particle pairs (i,j):
execute user-defined kernel

domain
specialist

computational
scientist

dim=3 # dimension
npart=1000 # number of particles

Define Particle Dats
a = ParticleDat(npart=npart, ncomp=dim)
b = ParticleDat(ncomp=1,npart=npart, initial_value=0.0)
S = ScalarArray(ncomp=1,initial_value=0.0)

kernel_code='''
 double da_sq = 0.0;
 for (int r=0;r<dim;++r) {
 double da = a.i[r]-a.j[r]; da_sq += da*da;
 }
 b.i[0] += da_sq; S += da_sq*da_sq;
'''

Define constants passed to kernel
consts = (Constant('dim', dim),)

Define kernel
kernel = Kernel('update',kernel_code,consts)

Define and execute pair loop
pair_loop = PairLoop(kernel=kernel, {'a':a(access.READ),
 'b':b(access.INC),
 'S':S(access.INC)})
pair_loop.execute()

b(i) =
X

all pairs (i, j)

d�1X

r=0

⇣
a(i)r � a(j)r

⌘2

Sg =
X

all pairs (i, j)

d�1X

r=0

⇣
a(i)r � a(j)r

⌘4
.

Given particle property a, calculate particle
property b and global property Sg according to:

Results I strong scaling/comparison to monolithic MD codes

[1] Rathgeber et al.:“PyOP2: A High-Level Framework for Performance-Portable Simulations on Unstructured Meshes.” In HPC, Networking Storage and Analysis, SC Companion, Los Alamitos, CA, USA, 2012. IEEE Computer Society
[2] Saunders, Grant and Müller: “A Domain Specific Language for Performance Portable Molecular Dynamics Algorithms” submitted to Computer Physics Communications [arxiv:1704.03329]
[3] Steinhardt, Nelson, and Ronchetti: “Bond-orientational order in liquids and glasses”. Physical Review B, 28(2), p.784. 1983
[4] Honeycutt and Andersen: “Molecular dynamics study of melting and freezing of small Lennard-Jones clusters”. J. Phys. Chem., 91(19), pp.4950-4963. 1987
This research made use of the Balena High Performance Computing Service at the University of Bath. The PhD project of William Saunders is funded by an EPSRC studentship

Particle properties (mass, position, velocity)
• stored in a numpy array wrapped in a Python

ParticleDat object
• r-th component of property a for particle pair (i,j)

accessible as a.i[r] and a.j[r] in C-kernel
• storage on host or device memory, access marks data as

dirty (for halo exchanges) and/or triggers copies between  
host and device

• global properties (total energy, RDF) stored as
ScalarArray objects

Particle pair loops
• executes C-kernel over all particle pairs (i,j)
• access descriptors trigger halo exchanges, if necessary
• C-code for pair-looping on a particular architecture is

auto-generated and  
kernel inlined

• currently support for 
MPI, CUDA, 
MPI+CUDA

• particle list, 
neighbour-list, 
neighbour-matrix

a.i[r] (read)

b.i[0] (write)

a.j[r] (read)

property a

property b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

8
21

4

2 1

kernel

24

3

global property S (write)

• compare to LAMMPS, DL_POLY
• Lennard-Jones benchmark
• 1 million atoms
• Kepler K20X GPU & Intel Xeon

E5-2650v2 CPU (Ivybridge)
• 64 CPU nodes (1024 cores)

Results II structure analysis

1
16

2
16

4
16

8
16 1 2 4

Node count

0

100

200

300

400

500

In
te

gr
at

io
n

ti
m

e
(s

)

3.3 · 10
4

1.3 · 10
5

5.2 · 10
5

2.1 · 10
6

Number of particles

weak scaling
Lennard-Jones with on-the-fly BOA

• LJ-run with bond angle analysis (BOA) [3]

• Common neighbour analysis (CNA) [4] in
post processing stage

classify pairs by triplet (nnb,nb,nlcb):
1. # common neighbours
2. # neighbour links
3. neighbour cluster size

 source code  
https://bitbucket.org/wrs20/ppmd

• Python code generation framework for Molecular Dynamics Simulations
• algorithms (timestepping, thermostats,…) expressed at high abstraction level
• computationally expensive loops over particles and particle 

pairs are realised as auto-generated C-code
• domain specialist only has to write Python algorithm and  

local particle- (pair-) kernels
• particle properties with access descriptors determine required  

parallel operations outside kernel call (compare PyOP2 [1]  
for grid-based PDE solvers)

• flexibility and convenience of high-level language  
combined with performance of compiled code

i

j

kernel

(4,2,1)

Q(i)
` =

vuut 4⇡

2`+ 1

+X̀

m=�`

���q(i)`m

���
2
, q(i)`m =

1

Nnb

Nnb�1X

j=0

Y m
`

⇣
r(i) � r(j)

⌘

total performance % of peak % of time

16 core Intel Xeon (333 GFLOPs) 16.5% 54.8%

nVidia K20X GPU (1310 GFLOPs) 11.9% 36.9%

DSL

Framework

Hardware

➠ suitable abstraction?

https://bitbucket.org/wrs20/ppmd

