A Domain Specific Language for Performance Portable Molecular Simulations

William Robert Saunders, James Grant, Eike Hermann Muller*

University of Bath, United Kingdom

* poster presenter

Challenges for modern MD codes

Molecular Dynamics (MD) codes predict the physical properties of matter by simulating
a large number of interacting particles. To make accurate predictions, models need to
run efficiently on massively parallel computers and manycore chips.

This creates several challenges:

e diversifying hardware landscape
e parallelisation/optimisation often inseparable from science code
e growing data volumes, (post-) processing (=structure analysis) often sequential
e development of efficient code requires diverse range of skills:
1. domain specific knowledge (physics/chemistry)
2. parallel programming & optimisation on CPUs, GPUs, Xeon Phi,...
= significant manpower required
= rare for an individual to possess all those skills
= rewrite code for each new hardware platform

Our design principle: “separation of concerns” between
domain specialist and computational scientist
w suitable abstraction?

DSL

Framework

computational

Python code generation system scientist

Hardware

e Python code generation framework for Molecular Dynamics Simulations
¢ algorithms (timestepping, thermostats,...) expressed at high abstraction level
® computationally expensive loops over particles and particle
pairs are realised as auto-generated C-code
® domain specialist only has to write Python algorithm and
local particle- (pair-) kernels E
® particle properties with access descriptors determine required 5
parallel operations outside kernel call (compare PyOP2 [1]
for grid-based PDE solvers)
¢ flexibility and convenience of high-level language
combined with performance of compiled code

Key idea & abstraction
fundamental operation in MD codes:

[=]

[

for all particle pairs (i,j):
execute user-defined kernel

® pair looping hardware dependent (neighbour-list, layer algorithm, ...)
* includes non-force calculation (local analysis kernels)
e fundamental data structures:

1. particle properties (mass, position, velocity,...)

2. global properties (total energy, RDF, ...)

source code
https://bitbucket.org/wrs20/ppmd

; m Separate algorithm and kernel from parallel loop over pairs
Data structures & execution model
Particle properties (mass, position, velocity) o I Kernel (C) Examp|e code
e stored in a numpy array wrapped in a Python cu uses .
ParticleDat object © | Algorithm Given particle property a, calculate particle
e r-th component of property a for particle pair (i,j) €0 Kernel (C) (Python) property b and global property S¢ according to:
accessibleas a.i[r] and a.j[r] in C-kernel 8 8_
* storage on host or device memory, access marks data as) I Kernel (C) @ SR N
. . i b = E Z (a(l) _ a(]))
dirty (for halo exchanges) and/or triggers copies between o - - - o - . 6] " "
host and device - T \
® global properties (total energy, RDF) stored as 9 — Z Z (a@ _ ag)))
ScalarArray objects all pairs (i, j) r=0
Particle pair loops Framework (code generation system) dim=3 # dimension .
¢ executes C-kernel over all particle pairs (i,j) © npart=1000 # number of particles
® access descriptors trigger halo exchanges, if necessary c " . : Eeii::iiizgii}: D et neom —dim)
® (C-code for pair-looping on a particular architecture is 9 0 generates b = ParticleDat(nsomp=ll,)npa1,':t=npa$t, initial_value=0.0)
9 il e
auto-generated and B £ | auto-generated auto-generated T scalaﬂf?(nwmm'mual_value:o'o)
kernel inlined ® @._ 3 @ | CPU+MPI code (C) GPU code (C) keéZiizZ"ZZ:sq = 0.0;
* currently support for NS Qg . for (int P=0;e<dimj++zr) {
execute double da = a.i[r]-a.j[r]; d += da*da;
MPI. CUDA, @ EU) }o e da = a.i[r]-a.j[r]; da_sq a*da
MPI+CUDA 8 HI'J-i[O] += da_sq; S += da_sqg*da_sq;
® particle list, .
neighbour-is, a e
neighbour-matrix] wosery s)
i # Define kernel
kernel = Kernel('update',kernel code,consts)
I IIT T T TTTTTT T] property b 2 e cdl T pair loop
pair_loop = PairLoop(kernel=kernel, {'a':a(access.READ),
'b':b(access.INC),
'S':S(access.INC)})
pair_loop.execute()

Results | strong scaling/comparison to monolithic MD codes

compare to LAMMPS, DL_POLY
Lennard-Jones benchmark

1 million atoms

Kepler K20X GPU & Intel Xeon
E5-2650v2 CPU (lvybridge)

e 64 CPU nodes (1024 cores)

Number of particles
A o %l O
3330 307 9107 5400

Results Il structure analysis
® | J-run with bond angle analysis (BOA) [3]

Number of particles per CPU core
) |) 2
}S\I, 10 62" 10 8¢ A0 08 A\

particles per CPU core

62 10 18 10

Number of
Lo
Yo

0810 500

400 |
@ _ L
Nub

w
S
S

RSl @) _ p)
m (o) _ 1
]gu Yy (r T)

200

* Common neighbour analysis (CNA) [4] in
post processing stage

- - LAMMPS 0 -

- DLPOLY classify pairs by triplet (Nno,Nb,Nicb): F

1. # common neighbours

2. # neighbour links

3. neighbour cluster size

100 |

Integration time (s)

== LAMMPS

total performance .+ DLPOLY

16 core Intel Xeon (333 GFLOPs)

% of time

54.8% % S
36.9%

Node/GPU count

% of peak
16.5%

% Y 2

A
Node/GPU count

® : 2 o
s) 2 RCRENEN Node count

nVidia K20X GPU (1310 GFLOPs) 11.9%

weak scaling
Lennard-Jones with on-the-fly BOA

[1] Rathgeber et al.: “PyOP2: A High-Level Framework for Performance-Portable Simulations on Unstructured Meshes.” In HPC, Networking Storage and Analysis, SC Companion, Los Alamitos, CA, USA, 2012. IEEE Computer Society
[2] Saunders, Grant and Mdller: “A Domain Specific Language for Performance Portable Molecular Dynamics Algorithms” submitted to Computer Physics Communications [arxiv:1704.03329]

[3] Steinhardt, Nelson, and Ronchetti: “Bond-orientational order in liquids and glasses’. Physical Review B, 28(2), p.784. 1983

[4] Honeycutt and Andersen: “Molecular dynamics study of melting and freezing of small Lennard-Jones clusters”. J. Phys. Chem., 91(19), pp.4950-4963. 1987

This research made use of the Balena High Performance Computing Service at the University of Bath. The PhD project of William Saunders is funded by an EPSRC studentship

https://bitbucket.org/wrs20/ppmd

