
INTERTWinE: Resource Manager APIs

Resource Manager General Overview
The Resource Manager is designed to improve the interoperability and composability between parallel
runtime systems and parallel libraries. To that end, the Resource Manager introduces four APIs to arbitrate
access to CPUs between multiple parallel runtime systems and to improve the interoperability between
task-based programming models and communication APIs. These four APIs are designed as low-level mech-
anisms that will be used to implement and enforce high-level user-defined policies.

List of authors:

Xavier Teruel (BSC), Vicenç Beltran (BSC)

Mark Bull (EPCC), Olivier Aumage (Inria),

and Enrique S. Quintana (UJI)

Dynamic Resource Sharing API
Sometimes the programmer misestimates the resources required to execute a parallel kernel which may re-
sult in either oversubscription or undersubscription. Dynamic Resource Sharing allows task-based runtime
systems to lend owned resources when they are unused and to borrow non-owned resources when its
owner is not using them.

Task Pause and Resume API
The explicit Task Pause and Resume API is a set of services that allows third party libraries (or other
software elements) to interact with the scheduler of a task-based runtime system. The program may
inform the scheduler that a task is going to block, so that other tasks can be executed until the blocked task
becomes ready again.

http://www.intertwine-project.eu

http://twitter.com/intertwine_eu

Project funded by the European Commission.

Grant agreement number: 671602

Offloading and Resource Enforcement APIs
The Offloading and Resource Enforcement APIs enable the encapsulation and instantiation of task-based
parallel kernels from any sequential or parallel application (pthreads, OpenMP, Java, etc.). Offload may
work at two different layers: OpenCL (optional) and Native (mandatory). Resource Enforcement allows re-
source ownership to be established once the application or library is initialized.

→ Native Offload & Resource Enforcement:

→ OpenCL Offload & Resource Enforcement:

void tbrs_spawn_kernel_on_cpus(void *data, void(*function)(void *),

void *args, cpu_set_t *cpu_set);

subdevice = clCreateSubDevices(device, props, num_dev, subdevices, 0);

ctx = clCreateContext(0, 1, &subdevice, 0, 0, 0);

queue = clCreateCommandQueueWithProperties(ctx, dev[0], 0, NULL);

[…]

clEnqueueNativeKernelWithType(queue, &libMATH_compute_kernel, &args,

 sizeof(args), 0, NULL, NULL, CL_NATIVE_KERNEL_OMPSS, 0, NULL, &h->event);

