

Application Characterization by using Hardware Performance Counters with Data Mining

Jieun Choi, Geunchul Park, and Dukyun Nam

Supercomputing Center at the Korea Institute of Science and Technology Information (KISTI)

Introduction

Application-awareness in Supercomputer

- Basically, the minimum resources required by the application must be guaranteed.
- With the advent of processors including new architecture, application-awareness in HPC become difficult.
- Additional on-package & high-bandwidth memory
- More scalable processor or Self-booting processor
- High-speed interconnect architecture etc.
- Conventional analysis approaches such as code static analysis or run-time monitoring are *not* sufficient

Proposed Application Characterization Method

- ✓ **Trace and profile processor behavior** using hardware performance counter
- Simply and quickly classify application characteristics with data mining
- ✓ **Provide insights** for resource management and performance optimization

intel

allinea

Application Characterization with Data Mining

Our Approach

Overall Steps: Event Collection – Profiling – Application Characterization

[Event Collection Step]

- Record the number of hardware events occurrences with NAS Parallel Benchmarks (NPB) in 4 KNL nodes.
 - Intel® Xeon Phi[™] CPU 7250 @ 1.40GHz, 68cores (enable hyper-threading)
 - 96GB DDR4 and 16GB MCDRAM memory (cache mode)

[Profiling Step]

- Process the collected data by applying Expectation-Maximization (EM) clustering technique using Weka tools.
 - EM clustering is representative probability-based algorithm

Backgrounds & Related Works

Hardware Performance Counters

- Built into the microprocessor as a set of special purpose registers
- Count the number of occurrences of performance-related hardware events
- Can profile and trace performance events using Linux Perf

Application Profiling Tools

Intel Knights Landing Processor (KNL)

Hardware Specification

- Stand-alone processor (up to 72 cores)
 - 288 cores with hyper-threading

Generate refined information by profiling raw events with data mining

Gain insights and draw tables/charts for application characteristics based on the probability for inclusion in clusters.

- Execute EM clustering 3 times for each event category.
- Set the value of cluster parameter to 3 which means relative resource usage

[Application Characterization Step]

- Generate application characterization tables
- Verify against the authorized NPB characterization CG

Case Study: Interference Analysis with Application Characteristics

🗰 MG,FT 🇰 BT_epio

We assumed that a larger overlapping area of the charts indicates greater contention and interference between resources.

- Multi-channel DRAM (MCDRAM)
 - DDR4 : ~90GB/s (up to 384GB)
- MCDRAM: ~465GB/s (up to 16GB)
- 3 possible HBM memory models
- Cache / Flat / Hybrid modes
- > We categorize hardware events of the KNL according to three critical criteria (CPU, Memory, Disk I/O)

Category	Detailed Event List	
CPU	Instructions, Branch Instructions, Branch Misprediction, iTLB loads, iTLB load misses, L1 icache loads, L1 icache load misses, UOPS_RETIRED.ALL, UOPS_RETIRED.SCALAR_SIM MEM_UOPS_RETIRED.ALL_Stores	
Memory	Cache misses, cache references, L1-dcache-load-misses, LLC-loads, dTLB-load-misses, MEM_UOPS_RETIRED.L2_HIT_LADS, MEM_UOPS_RETIRED.L2_MISS_LOADS, L2_REQUESTS_REJECT.ALL, L2_REQUESTS_REJECT_REFERENCE, L2_REQUESTS_REJECT_MISS	
Disk I/O	Scsi_dispatch_cmd_done, xfs_file_buffered_write, xfs_file_Read, xfs_get_block_allc, xfs_get_blocks_found	

	NAS Parallel Benchmark	
NPB is be	enchmark test programs for Computational Fluid Dy	namics
APP.	Problem description	App. Characteristics

1.472 3.027 2.163 2.553 3.462 [Figure 2: Overlapping area through two application characteristics table]

Experimental scenarios

iii IS

CG

[Sequential Execution: the second application was performed after each thread executed the first application]

IS BT_full

[Intersectional Execution: the two threads performed different applications, and they then changed applications]

Experimental results

12

- Pearson correlation coefficient : -0.374 (the case of seven I/O-intensive cases were excluded)
- \Rightarrow There is a significant negative linear correlation between interference ratios execution efficiency.

Execution Time of Type B Execution Efficiency (%) = 100 -Execution Time of Type A

EP,BT,LU # BT_full # BT_epio # BT_simple

IS	Integer sort, random memory access	Compute
EP	Embarrassingly parallel, no communication between each process	Compute
CG	Conjugate gradient, irregular memory access	Memory
MG	Multi-grid on a sequence of meshes, Long- and short-distance communication	Compute & Memory
FT	Discrete 3D fast Fourier transform, all-to-all communication	Compute
BT	Block tri-diagonal solver	Compute
SP	Scalar penta-diagonal solver	Compute
LU	Lower-upper Gauss-Seidel solver	I/O
BT_epio	Each participating process writes data	I/O
BT_full	MPI I/O with collective buffering	I/O
BT_simple	MPI I/O without collective buffering	I/O

Conclusion & Future Work

- In this paper, we have laid the foundation for the whole performance profiling • software development in supercomputer.
- We will continue to investigate inter-node communication patterns in cluster system.
- We plan to additional performance optimization experiments for disk I/O-intensive application.