
Application Characterization by using

Hardware Performance Counters with Data Mining
Jieun Choi, Geunchul Park, and Dukyun Nam

Supercomputing Center at the Korea Institute of Science and Technology Information (KISTI)

Introduction

NAS Parallel Benchmark

Conclusion & Future Work

Application-awareness in Supercomputer
• Basically, the minimum resources required by the application must be guaranteed.

• With the advent of processors including new architecture, application-awareness in

HPC become difficult.

- Additional on-package & high-bandwidth memory

- More scalable processor or Self-booting processor

- High-speed interconnect architecture etc.

• Conventional analysis approaches such as code static analysis or run-time

monitoring are not sufficient

• We assumed that a larger overlapping area of the charts indicates greater

contention and interference between resources.

• Experimental scenarios

• In this paper, we have laid the foundation for the whole performance profiling

software development in supercomputer.

• We will continue to investigate inter-node communication patterns in cluster system.

• We plan to additional performance optimization experiments for disk I/O-intensive

application.

• Experimental results

- Pearson correlation coefficient : -0.374 (the case of seven I/O-intensive

cases were excluded)

 There is a significant negative linear correlation between interference ratios

execution efficiency.

Application 1

Application 2

Thread 1

Thread 2

Thread 1

Thread 2

Time Time

[Figure 2: Overlapping area through two application characteristics table]

0
1
2
3

C

MD

CG IS

1.472

0
1
2
3

C

MD

IS BT_full

2.163

0
1
2
3

C

MD

MG,FT BT_epio

2.553

0
1
2
3

C

MD

EP,BT,LU BT_full

3.027

0
1
2
3

C

MD

BT_epio BT_simple

3.462

APP. Problem description
App.

Characteristics

IS Integer sort, random memory access Compute

EP Embarrassingly parallel, no communication

between each process

Compute

CG Conjugate gradient, irregular memory access Memory

MG Multi-grid on a sequence of meshes, Long- and

short-distance communication

Compute &

Memory

FT Discrete 3D fast Fourier transform, all-to-all

communication

Compute

BT Block tri-diagonal solver Compute

SP Scalar penta-diagonal solver Compute

LU Lower-upper Gauss-Seidel solver I/O

BT_epio Each participating process writes data I/O

BT_full MPI I/O with collective buffering I/O

BT_simple MPI I/O without collective buffering I/O

Backgrounds & Related Works

Hardware Performance Counters
• Built into the microprocessor as a set of special purpose registers

• Count the number of occurrences of performance-related hardware events

• Can profile and trace performance events using Linux Perf

Application Profiling Tools

Tool

(Institute)
Description

Vtune

(Intel)

• Use the HPC analysis using three critical metrics(CPU utilization, memory access, FPU utilization)
• Supply a single analysis interface for all the performance analysis on modern processors

TAU

(Univ. of Oregon)

• Instrument source code for routines, loops, and memory
• Measure time spent in each routine by profiling and tracing hardware performance counter
• Can utilize diverse visualization tools for graphical displays of all the performance analysis results

Allinea

(Arm)

• Highlight the slowest applications at a glance
• Provide a single page report about the computation, communication, and I/O activities

Proposed Application Characterization Method
 Trace and profile processor behavior using hardware performance counter

 Simply and quickly classify application characteristics with data mining

 Provide insights for resource management and performance optimization

Intel Knights Landing Processor (KNL)

Hardware Specification
• Stand-alone processor (up to 72 cores)

- 288 cores with hyper-threading

• Multi-channel DRAM (MCDRAM)

- DDR4 : ~90GB/s (up to 384GB)

- MCDRAM: ~465GB/s (up to 16GB)

• 3 possible HBM memory models

- Cache / Flat / Hybrid modes

 We categorize hardware events of the KNL according to three critical criteria

(CPU, Memory, Disk I/O)

Our Approach
• Overall Steps: Event Collection – Profiling – Application Characterization

Collect hardware

performance

events according

to computing

resource

Generate refined

information by

profiling raw

events with data

mining

Gain insights

and draw

tables/charts

for application

characteristics

[Profiling Step]

• Process the collected data by applying Expectation-

Maximization (EM) clustering technique using Weka tools.

- EM clustering is representative probability-based algorithm

based on the probability for inclusion in clusters.

- Execute EM clustering 3 times for each event category.

- Set the value of cluster parameter to 3 which means

relative resource usage

[Event Collection Step]

• Record the number of hardware events occurrences with

NAS Parallel Benchmarks (NPB) in 4 KNL nodes.

- Intel® Xeon Phi™ CPU 7250 @ 1.40GHz, 68cores

(enable hyper-threading)

- 96GB DDR4 and 16GB MCDRAM memory (cache mode)

0
1
2
3

C

M
D

EP, BT, LU

0
1
2
3

C

MD

IS

0
1
2
3

C

MD

CG

0
1
2
3

C

MD

SP

0
1
2
3

C

M
D

FT, MG

0
1
2
3

C

MD

BT_full

0
1
2
3

C

M
D

BT_epio

0
1
2
3

C

M
D

BT_simple

Category Detailed Event List

CPU

Instructions, Branch Instructions, Branch Misprediction, iTLB loads, iTLB load misses,

L1 icache loads, L1 icache load misses, UOPS_RETIRED.ALL, UOPS_RETIRED.SCALAR_SIMD,

MEM_UOPS_RETIRED.ALL_Stores

Memory

Cache misses, cache references, L1-dcache-load-misses, LLC-loads, dTLB-load-misses,

MEM_UOPS_RETIRED.L2_HIT_LADS, MEM_UOPS_RETIRED.L2_MISS_LOADS,

L2_REQUESTS_REJECT.ALL, L2_REQUESTS_REJECT_REFERENCE,

L2_REQUESTS_REJECT_MISS

Disk I/O
Scsi_dispatch_cmd_done, xfs_file_buffered_write, xfs_file_Read, xfs_get_block_allc,

xfs_get_blocks_found

Case Study: Interference Analysis with Application Characteristics

Application Characterization with Data Mining

[Intersectional Execution:

the two threads performed

different applications, and they

then changed applications]

[Sequential Execution:

the second application was

performed after each thread

executed the first application]

• NPB is benchmark test programs for Computational Fluid Dynamics

[Figure 3: Results of efficiency of intersectional execution]

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 % = 𝟏𝟎𝟎 −
𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 𝒐𝒇 𝑻𝒚𝒑𝒆 𝑩

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 𝒐𝒇 𝑻𝒚𝒑𝒆 𝑨

[Application Characterization Step]

• Generate application characterization tables

• Verify against the authorized NPB characterization

[Figure 2: Application characteristics tables]

