
be
tte
r

1.33

29.03

0.99

0

5

10

15

20

25

30

via IB via Ethernet

La
te
nc
y
[u
se
c]

FPGA<->CPU1

CPU1->CPU1

Communication latency

lvia Ethernet: ~1μsec
lvia CPU + IB: 29.03μsec

ØCPU-FPGA comm. is dominant
ü CPU-FPGA interface offered
by current BSP is not good

22

Inter-node communication latency
(1 byte data)

via CPU + IB
(traditional method)

via Ethernet
(proposed method)

La
te
nc
y
[μ
se
c]

Be
tte
r 27.70

FPGA -> CPU
and

CPU -> FPGA

0

0.2

0.4

0.6

0.8

1

1.2

via Ethernet

La
te
nc
y
[u
se
c]

Ethernet IP
Controller

Ethernet IP

Ethernet Switch

Latency breakdown of
the Ethernet communication

via Ethernet

La
te
nc
y
[μ
se
c]

�&(�)� �+! *������.&�� �&��.�)� �������&)� " ��$��+�� ��������" *& 	�������&�! ��&)� "�-���������)�.+" ��$�$+(�����

Accelerating HPC applications on FPGAs using OpenCL and FPGA Network

ACKNOWLEDGEMENT

���
�%*�(��&(�
&$'+*�* &%�#��� �%��)���% ,�() *.�&���)+"+��
���(��+�*�����&&#�&���.)*�$)��%���%�&($�* &%��%� %��(%����% ,�() *.�&���)+"+��
���(��+�*�����&&#�&���+(���%��	''# ����� �%��)���% ,�() *.�&���)+"+��
���)*(&%&$ ��#��%)* *+*����&�&"+��% ,�() *.

0 OpenCL-ready High Speed FPGA Networking

Implementation overview

14

Our FPGA board
(BittWare A10PL4)

DDR4
mem

QSFP+

OpenCL
kernel

In
te
rc
on
ne
ct

PCIe
Controller

DDR4
Controller

DDR4
Controller

FPGA

FPGA board (A10PL4)

DDR4
mem

QSFP+

QSFP+

DDR4
mem

Driver

Host Application

Host PC

BSP

Ethernet IP
Controller
Ethernet IP
Controller

Ethernet
IP Core
Ethernet
IP Core

additionally implemented
I/O channel

specified access
QSFP+ port

calibration is needed

(

(

(

(

(

(

(

(

(

(

/. .

F
0

)
.1

F

4523 4523 4523 4523

(

(

(

(

(

(

(

(

(

(

/. .

F
0

)
.1

F

4523 4523 4523 4523(Performance)

(Speedup)

be
tte
r

• Intel FPGA supports OpenCL programming

environment as an HLS

• Board Support Package (BSP) is a hardware

component to support multiple different boards

• Which FPGA chip is used on the board

• What kind of peripherals are support by the

board

• Basically, only minimum interfaces are supported

• To perform inter FPGA communication,

implementing network controller and

integrating it into the BSP are required

4.97GB/s (99.4% of peak)

OpenCL code snippets for ping-pong

l Data movement is performed with I/O channel API

17

// Set MAC Addresses
write_channel_intel(SET_SRC , src_addr);
write_channel_intel(SET_DST, dst_addr);

// Set send data
for (i = 0 ; i < data_size ; i++) write_channel_intel(SEND, send_data[i]);

sender

// Get recv data
for (i = 0 ; i < data_size ; i++) recv_data[i] = read_channel_intel(RECV);

receiver

Prepender

Remover
FIFO Buffer

FIFO Buffer

Ethernet IP Controller
src_addr
dst_addr
send_data[i]
recv_data[i]

OpenCL
kernel SET_SRC

SET_DST
SEND
RECV In

te
rc
on
ne
ct

Channel ID

• Communication is performed with I/O channel API

• Vendor extension to OpenCL language

• Enables control peripherals I/O from OpenCL

• Himeno Benchmark (3D poisson equation solver)

• Halo data exchange in stencil computation and

allreduce are implemented on our mechanism

P
e

r
fo

r
m

a
n

c
e

 [
M

F
L
O

P
S

]

P
a

r
a

lle
l E

f
f. (

4
n

o
d

e
s
/
1

n
o

d
e

)

0 Accelerator in Switch (AiS)

0 Authentic Radiation Transfer (ART) on FPGA

Host OS CentOS 7.3

Host Compiler gcc 4.8.5

FPGA
toolchain

Intel FPGA SDK for OpenCL,
Intel Quartus Prime Pro
Version 17.0.0 Build 289

Evaluation testbed

lPre-PACS-X (PPX)
Ø PACS-X prototype
Ø CCS, U. Tsukuba

20

A10PL4 P100

IB HCA
CPU

NVMe CPU:
Intel Xeon
E5-2660 v4 x2 GPU:

NVIDIA P100 x2

FPGA:
BittWare A10PL4

HCA:
Mellanox IB/EDR

QSFP+: 40Gbps x2

IB/EDR: 100Gbps
comp. node

For more detail, please let me
know after this talk

• Accelerator in Switch (AiS) is a concept proposed by

Prof. Amano, Keio University, Japan

• It couples communication and computations

tightly

• FPGAs can act as both of computation

accelerators and network switches

• FPGA programming cost using Hardware Description

Language (HDL) is very expensive

• Due to improvement of High Level Synthesis (HLS),

programming cost of FPGA is decreasing

• No HDL code is required

• Application programmers can program FPGAs

• We consider we can realize AiS system using FPGAs

• Pre-PACS-X (PPX) is a

test-bed system in

Center for

Computational

Sciences, University of

Tsukuba

• It is a prototype of

the next generation

system of their

PACS series

supercomputer

• Each node has 2

CPUs, 2 GPUs and 2

FPGAs

• Not only InfiniBand

network for CPUs

but also 40GbE

network for FPGAs

• Inter-node ping-pong communication latency

through an Ethernet switch

• Approximately 1μ sec of communication latency

• Much faster than traditional method (CPU Copy +

InfiniBand)

• Accelerated Radiative transfer on grids Oct-Tree

(ARGOT) has been developer in Center for

Computational Sciences, University of Tsukuba

• ART is one of algorithms used in ARGOT and

dominant part (90% or more of computation

time) of ARGOT program

• ART is ray tracing based algorithm

• problem space is divided

into meshes and reactions

are computed on each mesh

• Memory access pattern

depends on ray direction

• Not suitable for SIMD architecture

PE BEBE PE

96bit x2
(read,write)

Channel

PE PE BEBE

BEBE

BEBE

y

x
Ray Data

0

200

400

600

800

1000

1200

1400

(16,16,16) (32,32,32) (64,64,64) (128,128,128)

Pe
rf

or
m

an
ce

 [M
 m

es
h/

s]

mesh size

CPU(14C)
CPU(28C)
P100(x1)
FPGA

be
tte
r

(16x16x16) (8x8x8)

mesh

4
) 4 4 (44

4

4 44

42 4
)

PE Array
(2x2x2)

DDR4
Memory

Memory
Reader

Memory
Writer

Buffer

Buffer

Channel
Memory Network

Fig. 5: Design Outline of ART on FPGA.

each other. Each kernel computes reaction between a mesh and a ray
on its own computation space which is dedicated to each kernel. While
computing, a ray is traversed among multiple compute kernels depend-
ing on its location. If a ray goes out from kernel’s space, its data will be
transferred to a neighbor kernel through a channel.
Figure 5 shows the design outline of our implementation. “Memory Reader”
reads mesh data from DDR4 memory which is seen as a global memory
from OpenCL language. “Memory Writer” is a counterpart to the reader
and updates mesh data by the result of computation. It has both of read
and write memory access because it computes integration of gas reaction.
“Buffer” is a mesh data buffer to improve memory access performance.
“PE Array” is an array of PEs (Processing Element). PE computes the
kernel of ART method. The array is consists of multiple kernels. We show
the detail of PE network in the next subsection.
Since our implementation is work-in-progress, it lacks some features from
the CPU implementation. While computation in an FPGA, all mesh data
must be put into its internal BRAM (Block Random Access Memory).
The FPGA implementation does not support to replace mesh data in-
volved by progression of its computation. Therefore, problem size which
an FPGA can solve is limited by the size of BRAM. The CPU implemen-
tation supports inter-node parallelization using MPI (Message Passing
Interface), but the FPGA implementation does not support any network-
ing functionality and uses only one FPGA.

4.2 Parallelization using Channel in an FPGA

We describe the structure in “PE Array” shown in Figure 5. A PE Array
is consists of PEs and BEs (Boundary Element) as shown in Figure 6.
It shows the PE Array network on the x-y dimension. We do not show
connections for z dimension to keep the figure simple. We also have a
similar connection to x-y dimension for z dimension.

Source
Kernel

Destination
Kernel

FIFO
Channel

Global Memory
(DDR4)

Source
Kernel

Destination
Kernel

Write Read

Off Chip

• Our implementation uses channel based approach

• One of extensions to OpenCL for FPGAs by Intel

• It enables inter kernel communication much faster

• No external memory (DDR) access is required

• Lower resource utilization than DDR access 0 Future Work

• Problem space is divided into small blocks

• e.g. (16, 16, 16) → 8 / (8, 8, 8)

• PE is assigned to each of small blocks

• To improve BRAM performance

• PEs are connected by channels each other

• PE: Processing Element

• BE: Boundary Element

• Kernel of PEs and BEs are started automatically by

autorun attribute

• Lower control overhead and resource usage

because of decreasing number of host controlled

kernels

without channels with channels

Mesh size # of PEs ALMs Regs. M20K DSP Freq.
(16,16,16) (2,2,2) 31% 31% 27% 21% 193.2MHz

(32,32,32) (2,2,2) 40% 40% 29% 21% 173.8MHz

(64,64,64) (2,2,2) 40% 40% 29% 21% 167.0MHz

(128,128,128) (2,2,2) 40% 40% 29% 21% 170.4MHz

• Applying OpenCL-ready network to ART

• Ray will be transferred through the network

• Using next-generation Intel Stratix10 FPGA

• Faster frequency, 3.8 times more DSPs and 4.3

times more M20Ks

• Up to 4x100 Gbps networking capability

• Performance evaluation on various problem sizes

• Values are “M meshes/s” (throughput), higher is

better

• FPGA is 4.9 times faster than CPU on 64
3

size

• Although FPGA is almost equal performance on

64
3

and 128
3
, FPGA is much faster than GPU on

16
3

and 32
3 Table 2: Resource usage and clock frequency of the implementation.

size # of PEs ALMs (%) Registers (%) M20K (%) MLAB DSP (%) Freq. [MHz]
(16, 16, 16) (2, 2, 2) 132,283 31% 267,828 31% 739 27% 14,310 312 21% 193.2
(32, 32, 32) (2, 2, 2) 169,882 40% 344,447 40% 796 29% 21,100 312 21% 173.8
(64, 64, 64) (2, 2, 2) 169,549 40% 344,512 40% 796 29% 21,250 312 21% 167.0

(128, 128, 128) (2, 2, 2) 169,662 40% 344,505 40% 796 29% 21,250 312 21% 170.4

Table 3: Performance comparison between FPGA, CPU and
GPU implementations. The unit is M mesh/sec.

Size CPU(14C) CPU(28C) P100 FPGA
(16,16,16) 112.4 77.2 105.3 1282.8
(32,32,32) 158.9 183.4 490.4 1165.2
(64,64,64) 175.0 227.2 1041.4 1111.0

(128,128,128) 95.4 165.0 1116.1 1133.5

per link) multiple interconnection links (up to 4 channels) on
it. Additionally, HLS such as OpenCL programming envi-
ronment is provided, and there are several tyeps of research
to involve them in FPGA computing. In [3], Kobayashi, et
al. show the basic feature to utilize the high speed intercon-
nection over FPGA driven by OpenCL kernels. Therefore,
although the performance of our implementation is almost
same as NVIDIA P100 GPU, the overall performance with
multiple computation nodes with FPGA to be connected di-
rectly can easily overcome the GPU implementation which
requires host CPU control and kernel switching for inter-
node communication. Networking overhead on FPGAs is
much lower than one on GPUs. To improve current ART
method implementation with such an interconnection fea-
ture on FPGA is our next step toward high performance
parallel FPGA computing.

8. CONCLUSION
In this paper, we optimized ART method used in ARGOT

program which solves a fundamental calculation in early
stage universe with space radiative transfer phenomenon,
on an FPGA using Intel FPGA SDK for OpenCL. We par-
allelized the algorithm using the SDK’s channel extension
in an FPGA. We achieved 4.89 times faster performance
than the CPU implementation using OpenMP as well as al-
most same performance as the GPU implementation using
CUDA.

Although the performance of the FPGA implementation
is comparable to NVIDIA P100 GPU, it has room to im-
prove its performance. The most important optimization
is resource optimization. If we can implement larger num-
ber of PEs than one of the current, we can improve per-
formance. However, it is difficult for us to reduce usage
of ALMs and registers because we do not describe them di-
rectly in OpenCL code. Not only resource but also frequency
is important. We suppose Arria 10 with OpenCL design can
run on 200MHz or higher frequency.

We will implement the network functionality into the ART
design to parallelize it among multiple FPGAs. We con-
sider networking using FPGAs is an important feature for
parallel applications using FPGAs. Although GPUs have
higher computation performance FLOPS and higher mem-
ory bandwidth than FPGAs, I/O including networking is a

weak point for GPUs because they are connected to NICs
through PCIe bus. In addition to networking, we will try to
run our code on Stratix 10 FPGA which is the next gener-
ation Intel FPGA. We expect we can implement more PEs
than Arria 10 FPGA because it has 2.2 times more ALM
blocks and 3.8 times more DPS blocks.

9. REFERENCES
[1] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt,

F. K. Hansen, M. Reinecke, and M. Bartelmann.
Healpix: A framework for high-resolution discretization
and fast analysis of data distributed on the sphere. The
Astrophysical Journal, 622(2):759, 2005.

[2] K. Hill, S. Craciun, A. George, and H. Lam.
Comparative analysis of opencl vs. hdl with
image-processing kernels on stratix-v fpga. In 2015
IEEE 26th International Conference on
Application-specific Systems, Architectures and
Processors (ASAP), pages 189–193, July 2015.

[3] R. Kobayashi, Y. Oobata, N. Fujita, Y. Yamaguchi,
and T. Boku. Opencl-ready high speed fpga network for
reconfigurable high performance computing. In
Proceedings of the International Conference on High
Performance Computing in Asia-Pacific Region, HPC
Asia 2018, pages 192–201, New York, NY, USA, 2018.
ACM.

[4] Y. Luo, X. Wen, K. Yoshii, S. Ogrenci-Memik,
G. Memik, H. Finkel, and F. Cappello. Evaluating
irregular memory access on opencl fpga platforms: A
case study with xsbench. In 2017 27th International
Conference on Field Programmable Logic and
Applications (FPL), pages 1–4, Sept 2017.

[5] T. Okamoto, K. Yoshikawa, and M. Umemura. argot:
accelerated radiative transfer on grids using oct-tree.
Monthly Notices of the Royal Astronomical Society,
419(4):2855–2866, 2012.

[6] S. Tanaka, K. Yoshikawa, T. Okamoto, and
K. Hasegawa. A new ray-tracing scheme for 3d diffuse
radiation transfer on highly parallel architectures.
Publications of the Astronomical Society of Japan,
67(4):62, 2015.

[7] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda,
and S. Matsuoka. Evaluating and optimizing opencl
kernels for high performance computing with fpgas. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’16, pages 35:1–35:12, Piscataway, NJ,
USA, 2016. IEEE Press.

CPU

CPU

GPU

IB

FPGA

ppx01

ppx02

ppx03

ppx04

ppx05

ppx00

In
fin

ib
an

d
Sw

itc
h

40
/1

00
G

Et
he

rn
et

 S
w

itc
h

We thank Intel University Program for providing us both of software and hardware.

