ppOpen=SOL

Robust ILU Precondtioner for Exascal

M. Kawai*1, A. Ida*2 and G. Wellein*3

*1 R-CCS Riken, *2 ITC The University of Tokyo, *3 Friedrich-Alexander-Universitat

Solving generalized eigenvalue problems derived from quantum systems with exascale systems

Modeling special materials

 $A\widetilde{x} = \lambda B\widetilde{x}$

Applying Sakurai-Sugiura or FEAST to generalized eigenvalue problems

Derived systems of linear equations

$$(zB-A)x=b\rightarrow A_Zx=b$$

Properties of coefficient matrix

- Sparse
- Small diagonal entries
- Ill-conditioned

Objective: Developing an iterative solver for the ill-conditioned equations Target of this study: ILU preconditioned Krylov subspace method with robustness and massive parallelism

For robustness

Preferred diagonal dominant coefficient matrices

→ Regularizations

 Adding a constant value to the diagonals Direct method to make dominant diagonals

 $A_z = A_z + \alpha I$ Applying ILU decomposition to \widetilde{A}_z

1st regularization: Diagonal shifting 2nd regularization: Blocking

Non-small diagonal sub matrices The effect of blocking technique 8E+05 Model: Topological insulator, DoF = 1M

 Solving all data sets Better convergence

with 58 data cases (63 data cases if we choose best block size)

For massively parallelism

Parallelize ILU preconditioner with multi-coloring (MC)

Have to parallelize MC algorithm without changing properties

Step3

→ Hierarchical parallelization

Step4

Providing colored area → Parallelizing MC algorithms without changing convergence and performance

The effect of hierarchical parallelization

BIC-COCG(4) You can download from here **PHIST**

a Pipelined Hybrid Parallel Iterative Solver Toolkit

30000 4000 Constant convergence 3000 20000 Good performance 2000 10000 iteration 1000 Performance Convergence 1000 5000 2000 4000 3000 Number of nodes

Good convergence and performance on a large graphene

System: Oakleaf-FX (ITC The university of Tokyo) SPARC64TM IXfx 128~4800 nodes DoF: 500M Threshold of iteration: Residual norm $< 10^{-7}$ Iterative method: ICCG Coloring method: 10 colors algebraic multi-coloring*1 Parameter: Block size = 4, Diagonal shifting = 1.0

- Double double precision
- Applying low-rank approximations

Conclusion

- Developing an ILU precoinditioner with highly robustness and massive parallelism
 - For highly robustness: Applying two regularizations (Blocking and diagonal shifting)
 - For massive parallelism: Proposing the hierarchical parallelization of MC algorithms → Solved a graphene problem (500M Do) with 4800 nodes (76,800 cores)

