

Eikonal equation

Mathematical Description

The electrophysiology of a human heart describes the expansion of an electrical stimulation therein and it is usually modeled by the bidomain equations (2 time-dependent PDEs + nonlinear ODE system).

- Instead of the full transmembrane potential some cardiovascular applications require only the arrival time of the excitation wave in different heart regions.
- In this case we can apply several model simplifications that lead to the Eikonal equation which is a special case of non-linear Hamilton–Jacobi partial differential equations:

$$\begin{cases} H(x, \nabla \phi) = \sqrt{(\nabla \phi)^T M(\nabla \phi)} = 1, & \forall x \in \Omega \subset \mathbb{R} \\ \phi(x) = B(x), & \forall x \in \beta \subset \Omega \end{cases}$$

where Ω is an open set in \mathbb{R}^n with well-behaved boundary, M(x) is a 3x3 symmetric positive-definite matrix encoding the speed information on Ω and β the boundary conditions.

The solution $\phi(x)$ is the shortest time needed to travel from the boundary $\partial \Omega$ to x inside Ω .

Eikonal Solver

We use the fast iterative method (FIM) by Fu, Kirby and Whitaker [2] as baseline Eikonal solver for our improvements in our research [1]. It is based on the local solver computed for each tetrahedron.

- An upwind scheme is used to compute an unknown solution ϕ_4 , assuming ϕ_1, ϕ_2, ϕ_3 are known.
- The goal is to find the location of x_5 which minimizes the travel time from x_5 to x_4 , $e_{5,4} = x_4 - x_5$, (Fermat's principle) i.e.,

$$\phi_4(\lambda_1,\lambda_2) = \lambda_1\phi_1 + \lambda_2\phi_2 + (1-\lambda_1-\lambda_2)\phi_3 + \sqrt{e_{5,4}^T M e_{5,4}}$$

Minimizing ϕ_4 requires solving (1) with $\lambda = [\lambda_1 \ \lambda_2 \ 1]^T$.

(1)
$$\begin{cases} \phi_{1,3}\sqrt{\lambda^{T}M'\lambda} &= \lambda^{T}\underline{\alpha} \\ \phi_{2,3}\lambda^{T}\underline{\alpha} &= \phi_{1,3}\lambda^{T}\underline{\beta} \end{cases} \text{ where } M' = \begin{cases} [e_{1,3}^{T}Me_{1,3}, \ e_{2,3}^{T}Me_{1,3}, \ e_{3,4}^{T}Me_{1,3}]^{T} \\ [e_{1,3}^{T}Me_{2,3}, \ e_{2,3}^{T}Me_{2,3}, \ e_{3,4}^{T}Me_{2,3}]^{T} \\ [e_{1,3}^{T}Me_{3,4}, \ e_{2,3}^{T}Me_{3,4}, \ e_{3,4}^{T}Me_{3,4}]^{T} \end{cases}$$

Solving (1) requires the coordinates of x_1, x_2, x_3, x_4 and the symmetric matrix M.

($4 \times 3 + 6$) floats from global memory + local storage for $e_{i,i}$ + inner products.

Low memory footprint solver - Gray Code

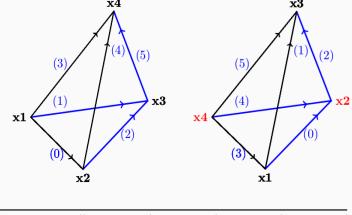
Gray Code Like Indexing (Fig. 2)				Μ	I-Sc	alar Prod	ucts Preca	alculated	and	l		
<i>x</i> ₄	X 3	<i>x</i> ₂	<i>X</i> 1	edge: d	f(d) = d/2 - 1	Stored in the 6x6 Symmetric Matrix T_M					1	
0	0	1	1	3	0		T_M	0	1	2		5
0	1	0	1	5	1		0	<i>e</i> _{1,2} <i>Me</i> _{1,2}	<i>e</i> _{1,2} <i>Me</i> _{1,3}	<i>e</i> _{1,2} <i>Me</i> _{2,3}		$e_{1,2}^{T}Me_{3,4}$
0	1	1	0	6	2		1		<i>e</i> _{1,3} <i>Me</i> _{1,3}	<i>e</i> _{1,3} <i>Me</i> _{2,3}		<i>e</i> _{1,3} <i>Me</i> _{3,4}
1	0	0	1	9	3		2			<i>e</i> _{2,3} <i>Me</i> _{2,3}		<i>e</i> _{2,3} <i>Me</i> _{3,4}
1	0	1	0	10	4							
1	1	0	0	12	5		5					<i>e</i> _{3,4} <i>Me</i> _{3,4}

Algorithm 1 Accessing M' wrt. common vertex j

- 1: Get Gray-code edge numbers $d_0(j), d_1(j), d_2(j)$
- 2: Get edge indices $k_i := \mathbf{f}_{int}(d_i)$ *i* = 0, 1, 2

3:
$$M' := T_M(\underline{k}, \underline{k})$$

Rotating Elements into the Reference Configuration

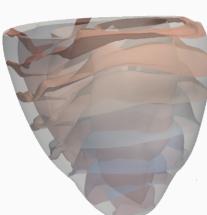


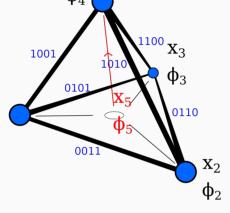
ϕ_{k}	ϕ_4	ϕ_3	ϕ_2	ϕ_1
Edges Signs	5,1,2	2,4,0	0,1,3	3,4,5
Signs	+,+,+	+,,+	+,-,-	-,+,+

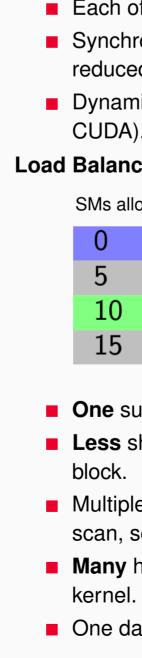
\triangleright extract 3 \times 3 matrix

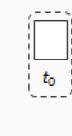
Further Memory Footprint Reduction

- Express products using elements from the main diagonal in T_M :
- $e_{1,2}^{T}Me_{1,3} = \frac{1}{2}(e_{1,3}^{T}Me_{1,3} + e_{1,2}^{T}Me_{1,2} e_{2,3}^{T}Me_{2,3})$
- Allows to store only the main diagonal inner products in T_M .
- The memory footprint reduces to 6 floats in total per tetrahedron.
- Less memory transfers, increased computations.
- No additional code branching.
- Can be adopted to problems of the kind.









Gray code results

Tested on GeForce GTX 1080 and Intel Core i7 2.40GHz.

Implementations	# Tets	CUDA	OpenMP 8 threads
Without Gray-code	3,073,529	1.49 sec.	5.66 sec.
With Gray-code	3,073,529	<mark>0.73</mark> sec.	<mark>3.65</mark> sec.
Without Gray-code	24,400,999		56.63 sec.
With Gray-code	24,400,999		36.43 sec.

CPU implementation: 33% faster.

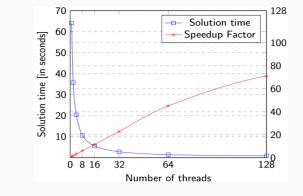
CUDA implementation: 50% faster.

Intel's Vtune Amplifier

Reduced non-coalesced memory accesses.

- The number of loads dropped to 70%.
- LLC miss count reduced to 84%.
- The number of stores dropped to 40%.

Scaling results on KNL, Xeon Phi 1.3GHz.



- Almost linear up to 64 physical cores.
- Starts to drop with hyperthreading.

NVIDIA Visual Profiler

- High local memory overhead, 54% of total memory traffic, disappeared totally.
- The L2-bandwidth is doubled, 952.08 GB/s.
- The memory-bandwidth increased from 60% to above 90%.

Gray code results on the Nvidia shield tablet (Android)

Implementations	# Tets	CUDA	OpenMP
Without Gray-code	3,073,529	30.26 sec.	205.22 sec.
With Gray-code	3,073,529	20.30 sec.	97.19 sec.

2.2 GHz quad ARM Cortex A15. Tegra K1, 192 core

- Kepler GPU.
- weak hardware => better acceleration

CUDA implementation: 33% faster.

CPU implementation: 52% faster.

main decomposition in CUDA

- rge scale problems, the task based parallel model will run into memory difficulties. Hence a er decomposition of the algorithm is needed, namely a domain decomposition approach
- **The domain** Ω is statically partitioned into a number of
- non-overlapping sub-domains Ω_i .
- Each of them is assigned to a single processor.
- Synchronization and communication of the processors is to be reduced to a minimum.
- Dynamic mapping of active subdomains to processors (GPU SMs in

Load Balancing Strategies

SMs allocated to solve for 3 active domains.

	1	2	3	4
	6	7	8	9
0	11	12	13	14
5	16	17	18	19

- One subdomain → mult. thread blocks. Less shared memory needed per thread
- Multiple seperate kernels:
- scan, scatter, compact, ...
- Many host synchronizations after each
- One data buffer.

Data Arrangement and Granularity by CUB Library

Striped arrangement across 4 threads.

Desirable for data movement through global memory (read/write coalescing).



0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19

- One subdomain ↔ one thread block.
- Reaches shared memory limitations per thread block.
- One large kernel including: scan, scatter, compact, ...
- **One** host synchronization at the termination condition.
- Dynamic memory allocation.

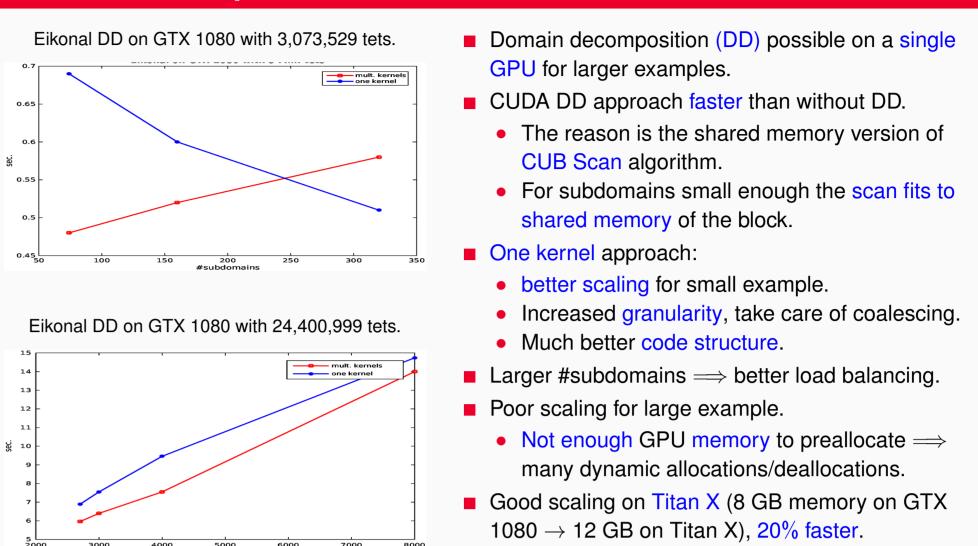
Block arrangement across 4 threads.

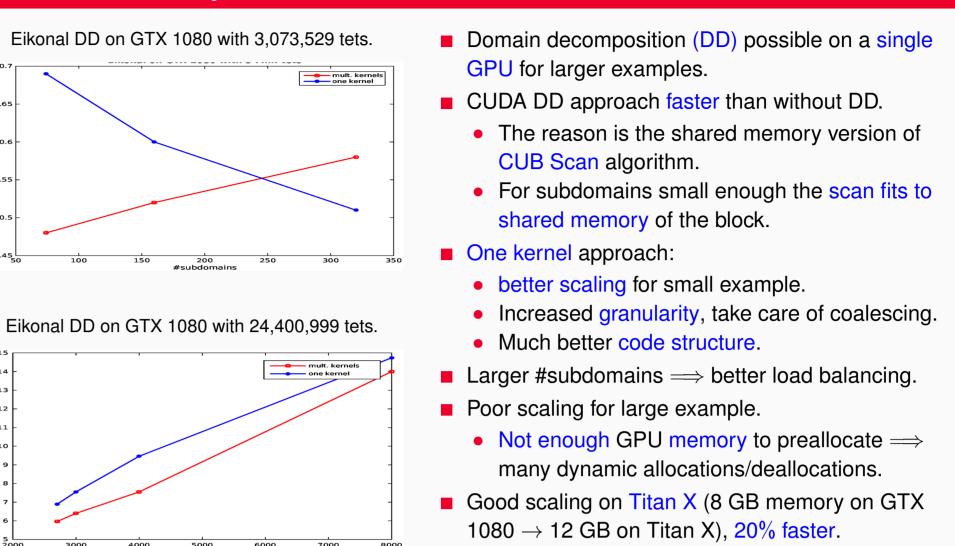
			Ň	Ì
to	t_1	<u>人</u> t2	j t₃	2

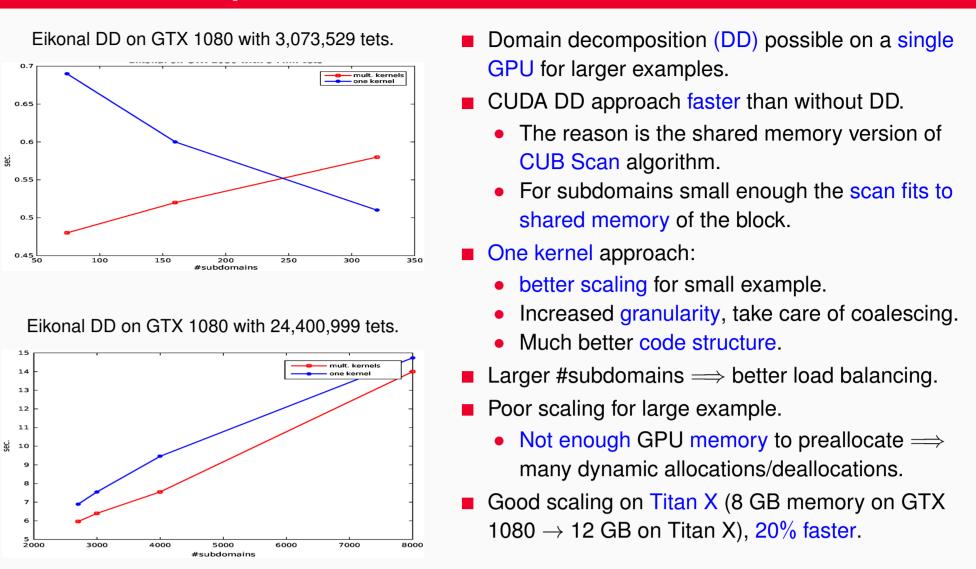
Increased performance with the increased granularity ITEMS_PER_THREAD.

MONT-BL/INC

Domain decomposition results and conclusions







Patient-specific cardiac parametrization from Eikonal simulations

Eikonal Equation with Material Domains

- Physiology: different heart tissues, heart chamber \rightarrow m different materials. $\Omega_{I} \bigcap \Omega_{k} = \emptyset$
- \xrightarrow{tets} $\overline{\Omega}_h = \bigcup \overline{\Omega}_k,$ Ω
- M(x) is constant in each tetrahedron $\tau \in \Omega_h$. Allow to scale M(x) in each material
- domain Ω_k by $\gamma_k \in \mathbb{R}$.

 $\sqrt{(\nabla \phi)^T \gamma_k \cdot M \cdot (}$

Now the excitation time $\phi(\gamma_k)$ depends on the scaling parameters $\gamma \in \mathbb{R}^m$.

Results and Timings

Method	Model	# Tets	1 thread	28 threads
BFGS	Tangent	3,073,529	3607 sec.	1369 sec.
BFGS	Adjoint	3,073,529	2471 sec.	678 sec.

Resulting $\gamma = (1 \ 1 \ 1 \ \dots \ 0.19 \ 0.2 \ 0.19 \ 0.2 \ 0.2 \ \dots \ 1 \ 1 \ 1).$

Ongoing Research

1. Cluster implementation of the CUDA domain decomposition. 2. Analytic approach to compute the gradient using the Adjoint-State method.

3. Deep learning approach.

Daniel Ganellari and Gundolf Haase

^aInstitute for Mathematics and Scientific Computing, Karl Franzens University of Graz, Austria Supported by Erasmus Mundus JoinEUsee PENTA scholarship, FWF project F32-N18 and Mont-Blanc 3.

Very high computational intensity of the bidomain equation. Impossible for the inverse problem. The Eikonal equation reduces significantly the computational intensity of the bidomain equation

$$\overline{\nabla\phi}$$
 = 1 $\forall x \in \Omega_k$

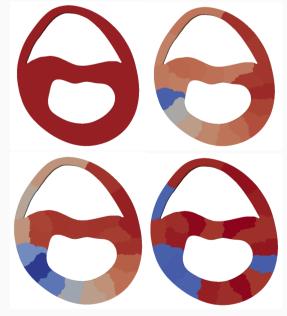
- **Optimization by Automatic Differentiation [3]**
 - Minimize

 $f(\boldsymbol{\gamma}) := \parallel \phi^*(\underline{\boldsymbol{x}}) - \phi(\boldsymbol{\gamma}, \underline{\boldsymbol{x}}) \parallel^2_{\ell_2(\omega_h)}$

- with ω_h denoting the vertices in the discretization of Ω_h and ϕ^* the measured solution.
- Steepest descent and BFGS algorithms.
- Calculation of gradient $\nabla_{\gamma} f(\gamma)$ is done via
- automatic differentiation [dco/c++].
- Tangent and adjoint models by overloading. Exact gradients, up to machine accuracy.

Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz, 252 GB RAM.

Factor of 2.6 for the tangent and 3.6 for the adjoint model. Adjoint 2 times faster than Tangent already for 21 domains.



Four steps simulation of the optimization using BFGS.

References

[1] D. Ganellari, G. Haase and G. Zumbusch, "A massively parallel eikonal solver on unstructured meshes", Computing and Visualization in Science, 2018.

[2] Z. Fu, R.M. Kirby and R.T. Whitaker, "Fast iterative method for solving the eikonal equation on tetrahedral domains", SIAM J. Sci. Comput., 2013. [3] U. Naumann, "The Art of Differentiating Computer Programs", SIAM, 2012.