
Parallel Low Memory Footprint Eikonal Solver in Cardiovascular Applications

Eikonal equation

Mathematical Description
The electrophysiology of a human heart describes the expansion of an
electrical stimulation therein and it is usually modeled by the bidomain
equations (2 time-dependent PDEs + nonlinear ODE system).

Instead of the full transmembrane potential some cardiovascular
applications require only the arrival time of the excitation wave in
different heart regions.

In this case we can apply several model simplifications that lead to the Eikonal equation which is
a special case of non-linear Hamilton–Jacobi partial differential equations:{

H(x ,∇φ) =
√

(∇φ)T M(∇φ) = 1, ∀x ∈ Ω ⊂ R3

φ(x) = B(x), ∀x ∈ β ⊂ Ω

where Ω is an open set in Rn with well-behaved boundary, M(x) is a 3x3 symmetric
positive-definite matrix encoding the speed information on Ω and β the boundary conditions.

The solution φ(x) is the shortest time needed to travel from the boundary ∂Ω to x inside Ω.

Eikonal Solver
We use the fast iterative method (FIM) by Fu, Kirby and Whitaker [2] as baseline Eikonal solver for our
improvements in our research [1]. It is based on the local solver computed for each tetrahedron.

An upwind scheme is used to compute an unknown solution φ4,
assuming φ1, φ2, φ3 are known.
The goal is to find the location of x5 which minimizes the travel
time from x5 to x4, e5,4 = x4 − x5, (Fermat’s principle) i.e.,

φ4(λ1, λ2) = λ1φ1 + λ2φ2 + (1− λ1 − λ2)φ3 +
√

eT
5,4Me5,4 .

Minimizing φ4 requires solving (1) with λ = [λ1 λ2 1]T .

(1)
{
φ1,3

√
λT M ′λ = λTα

φ2,3λ
Tα = φ1,3λ

Tβ .
where M ′ =


[eT

1,3Me1,3, eT
2,3Me1,3, eT

3,4Me1,3]T

[eT
1,3Me2,3, eT

2,3Me2,3, eT
3,4Me2,3]T

[eT
1,3Me3,4, eT

2,3Me3,4, eT
3,4Me3,4]T .

Solving (1) requires the coordinates of x1, x2, x3, x4 and the symmetric matrix M.
(4× 3 + 6) floats from global memory + local storage for ei,j + inner products.

Low memory footprint solver - Gray Code
Gray Code Like Indexing (Fig. 2)
x4 x3 x2 x1 edge: d f (d) = d/2− 1

0 0 1 1 3 0
0 1 0 1 5 1
0 1 1 0 6 2
1 0 0 1 9 3
1 0 1 0 10 4
1 1 0 0 12 5

M-Scalar Products Precalculated and
Stored in the 6x6 Symmetric Matrix TM

TM 0 1 2 ... 5

0 e1,2Me1,2 e1,2Me1,3 e1,2Me2,3 ... eT
1,2Me3,4

1 e1,3Me1,3 e1,3Me2,3 ... e1,3Me3,4

2 e2,3Me2,3 ... e2,3Me3,4

... ... ... ...
5 e3,4Me3,4

Algorithm 1 Accessing M ′ wrt. common vertex j

1: Get Gray-code edge numbers d0(j), d1(j), d2(j)
2: Get edge indices k i := fint(di) i = 0, 1, 2
3: M ′ := TM(k , k) . extract 3× 3 matrix

Rotating Elements into the Reference
Configuration

φk φ4 φ3 φ2 φ1

Edges 5,1,2 2,4,0 0,1,3 3,4,5
Signs +,+,+ +,–,+ +,–,– –,+,+

Further Memory Footprint Reduction
Express products using elements from the
main diagonal in TM :

Allows to store only the main diagonal
inner products in TM .
The memory footprint reduces to 6 floats
in total per tetrahedron.
Less memory transfers, increased
computations.
No additional code branching.
Can be adopted to problems of the kind.

Gray code results

Tested on GeForce GTX 1080 and Intel Core i7 2.40GHz.

Implementations # Tets CUDA OpenMP
8 threads

Without Gray-code 3,073,529 1.49 sec. 5.66 sec.
With Gray-code 3,073,529 0.73 sec. 3.65 sec.

Without Gray-code 24,400,999 11.48 sec. 56.63 sec.
With Gray-code 24,400,999 5.16 sec. 36.43 sec.

CPU implementation: 33% faster.
CUDA implementation: 50% faster.

Scaling results on KNL, Xeon Phi 1.3GHz.

Almost linear up to 64 physical cores.
Starts to drop with hyperthreading.

Intel’s Vtune Amplifier
Reduced non-coalesced memory
accesses.
• The number of loads dropped to 70%.
• LLC miss count reduced to 84%.
The number of stores dropped to 40%.

NVIDIA Visual Profiler
High local memory overhead, 54% of total
memory traffic, disappeared totally.
The L2-bandwidth is doubled, 952.08 GB/s.
The memory-bandwidth increased from 60%

to above 90%.

Gray code results on the Nvidia shield tablet (Android)
Implementations # Tets CUDA OpenMP

Without Gray-code 3,073,529 30.26 sec. 205.22 sec.
With Gray-code 3,073,529 20.30 sec. 97.19 sec.

CPU implementation: 52% faster.
CUDA implementation: 33% faster.

2.2 GHz quad ARM
Cortex A15.
Tegra K1, 192 core
Kepler GPU.

weak hardware =⇒ better acceleration.

Domain decomposition in CUDA

For large scale problems, the task based parallel model will run into memory difficulties. Hence a
coarser decomposition of the algorithm is needed, namely a domain decomposition approach.

The domain Ω is statically partitioned into a number of
non-overlapping sub-domains Ωi .
Each of them is assigned to a single processor.
Synchronization and communication of the processors is to be
reduced to a minimum.
Dynamic mapping of active subdomains to processors (GPU SMs in
CUDA).

Load Balancing Strategies

SMs allocated to solve for 3 active domains.

One subdomain→ mult. thread blocks.
Less shared memory needed per thread
block.
Multiple seperate kernels:
scan, scatter, compact, . . .
Many host synchronizations after each
kernel.
One data buffer.

SMs allocated to solve for 3 active domains.

One subdomain↔ one thread block.
Reaches shared memory limitations per
thread block.
One large kernel including:
scan, scatter, compact, . . .
One host synchronization at the
termination condition.
Dynamic memory allocation.

Data Arrangement and Granularity by CUB Library

Striped arrangement across 4 threads.

Desirable for data movement through
global memory (read/write coalescing).

Block arrangement across 4 threads.

Increased performance with the increased
granularity ITEMS_PER_THREAD.

Domain decomposition results and conclusions

Eikonal DD on GTX 1080 with 3,073,529 tets.

Eikonal DD on GTX 1080 with 24,400,999 tets.

Domain decomposition (DD) possible on a single
GPU for larger examples.
CUDA DD approach faster than without DD.
• The reason is the shared memory version of

CUB Scan algorithm.
• For subdomains small enough the scan fits to

shared memory of the block.
One kernel approach:
• better scaling for small example.
• Increased granularity, take care of coalescing.
• Much better code structure.
Larger #subdomains =⇒ better load balancing.
Poor scaling for large example.
• Not enough GPU memory to preallocate =⇒

many dynamic allocations/deallocations.
Good scaling on Titan X (8 GB memory on GTX
1080→ 12 GB on Titan X), 20% faster.

Patient-specific cardiac parametrization from Eikonal simulations

Very high computational intensity of the bidomain equation. Impossible for the inverse problem.
The Eikonal equation reduces significantly the computational intensity of the bidomain equation

Eikonal Equation with Material Domains
Physiology: different heart tissues, heart
chamber→ m different materials.

Ω
tets−→ Ωh =

m⋃
k=1

Ωk , Ωl
⋂
k 6=l

Ωk = ∅

M(x) is constant in each tetrahedron τ ∈ Ωh.
Allow to scale M(x) in each material
domain Ωk by γk ∈ R.√

(∇φ)Tγk ·M · (∇φ) = 1 ∀x ∈ Ωk

Now the excitation time φ(γk) depends on the
scaling parameters γ ∈ Rm.

Optimization by Automatic Differentiation [3]
Minimize

f (γ) :=‖ φ∗(x)− φ(γ, x) ‖2
`2(ωh)

with ωh denoting the vertices in the
discretization of Ωh and φ∗ the measured
solution.
Steepest descent and BFGS algorithms.

Calculation of gradient ∇γf (γ) is done via
automatic differentiation [dco/c++].
Tangent and adjoint models by overloading.
Exact gradients, up to machine accuracy.

Results and Timings

Initial : γ
0

= (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1).
Measured: γ∗ = (1 1 1 ... 0.2 0.2 0.2 0.2 0.2 ... 1 1 1).

Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz, 252 GB RAM.

Method Model # Tets 1 thread 28 threads
BFGS Tangent 3,073,529 3607 sec. 1369 sec.

BFGS Adjoint 3,073,529 2471 sec. 678 sec.

Resulting γ = (1 1 1 ... 0.19 0.2 0.19 0.2 0.2 ... 1 1 1).
Factor of 2.6 for the tangent and 3.6 for the adjoint model.
Adjoint 2 times faster than Tangent already for 21 domains.

Four steps simulation of the
optimization using BFGS.

Ongoing Research
1. Cluster implementation of the
CUDA domain decomposition.

2. Analytic approach to compute
the gradient using the Adjoint-State
method.

3. Deep learning approach.

References
[1] D. Ganellari, G. Haase and G. Zumbusch, "A massively parallel eikonal
solver on unstructured meshes", Computing and Visualization in Science,
2018.

[2] Z. Fu, R.M. Kirby and R.T. Whitaker, "Fast iterative method for solving the
eikonal equation on tetrahedral domains", SIAM J. Sci. Comput., 2013.

[3] U. Naumann, "The Art of Differentiating Computer Programs", SIAM, 2012.

Daniel Ganellari and Gundolf Haase
aInstitute for Mathematics and Scientific Computing, Karl Franzens University of Graz, Austria
Supported by Erasmus Mundus JoinEUsee PENTA scholarship, FWF project F32-N18 and Mont-Blanc 3.


