
Simulation Techniques and Scientific Computing

Adolf-Reichwein-Straße 2, 57068 Siegen, Germany

http://www.mb.uni-siegen.de/sts

Load Balancing in HPC Applications:
Quantification of LB related performance optimizations

Monika Harlacher

Data	
Structure	 Par++oning	 System	

Parameters	
Performance	

Model	
Applica+on	
Pa9ern	

CESM
Community Earth System Model

Atm
osphere

Sea ice
Ocean

La
nd

La
nd

 ic
e

Coupler

APES
Adaptable Poly-Engineering Simulator

with Lua
Configuration
Aotus

Deployment Scripts
Shepherd

AP
ES

m
at

e
C

ou
pl

in
g

of
 A

P
E

S
so

lv
er

sGalerkin
Discontinuous
Ateles

Lattice Boltzmann
Musubi

Space-Time DG
Muriqui

Mesh Generation
Seeder

Analysis
Post-Processing
Harvester

Infrastructure
Octree Mesh
TreElM

Motivation Load balancing difficulties
ØØ Balancing criteria is usually a combination of 	

	 multiple objectives.

ØØ Iterative nature of scientific simulations 			
	 accumulate waiting time.

ØØ Multi-component and multi-stage models 		
	 generate additional dependencies.

ØØ Workload may evolve over time.

ØØ Data structures constrain partitioning layout.

Application
structure

•  Iterations, synchronization
•  Multi-stage simulation
•  Multi-component physics

Data
structures

•  Space-filling curves
•  Static arrays
•  Multi-level structures

Dynamic
loads

•  Varying number of items
•  Varying cost per item

memory
demand

I/O access

compu-
tation
time commu-

nication
time ØØ Application pattern and data structures often limit load balancing quality in MPI applications.

ØØ Impact of communication cost is hard to model.

ØØ Implementation and testing of alternatives is usually not possible without major code intervention.

ØØ Software redesign is expensive and actual performance gain uncertain in advance.

ØØ Developers most often choose a design by experience rather than by cost assessment.

ØØ Means are missing to quantify performance differences in advance.

ØØ Study the correlation of

Methodology: Load balancing simulator
Software engineering tool

ØØ Run an abstract application model to study application behavior

ØØ Facilitate comparison of different load balancing strategies

ØØ Test exemplary implementation of alternative data and application structures

ØØ Unnecessitate time-consuming code modifications to original application

ØØ Guide decisions for expensive re-engineering

run$me:	
250	sec.	

Par$$oning/	
Balancing	strategy	

Applica$on	
performance	

run$me:	
90	sec.	

A	A	

B	 B	

Load	Balancing	Simulator	

1  compute	phase_1	
2  comm_scaCer	
3  loop	100	$mes	
4  compute	phase_2	
5  comm_NNexchange	
6  compute	phase_3	

7 0 9 4

1 8 4 5

6 0 1 2

10	6	 10	

7	

6	

7	 7	

12	12	 12	

6	

9	

12	 6	 6	

20	20	

comp.	&	comm.	weights	 Applica$on	schedule	

Applica'on	descrip'on	

Use cases: Impact of communication

1)

Target applications

CESM :: Community Earth System Model,
is a fully-coupled, community, global
climate model that provides state-of-the-
art computer simulations of the Earth’s past,
present, and future climate states.
Webpage: http://www.cesm.ucar.edu

APES :: Adaptive Poly-Engineering Simulator,
provides an efficient simulation stack for
engineering simulations. The framework
relies on a common octree-based library and
encompasses individual numerical solvers,
which can also be coupled.
Webpage: https://www.mb.uni-siegen.de/sts

2)

3)

Model B

Model A

Coupling

Time

Pr
oc

es
se

s

Domain is split into several physical subdomains which run
on distinct sets of processors. Only interface elements need
data exchange between the different models.

ØØ How do we find an optimal configuration of processor 		
	 sets and distribution of elements?

CESM static arrays limit partition sizes
Computational load in the CESM sea ice model is almost
exclusively located at pole regions. The implementation
uses fixed-size arrays, that bound memory demand and
avoid allocation overhead. While optimal partitioning by
computational weights is straightforward, it translates
into different communication pattern.

ØØ How do we model communication cost and 				
	 performance gain?

APES z-curve produces fragmented partitions
Mapping multi-dimensional domains to 1D curves preserves
locality only partially. Fragmented partitions introduce
additional communication.

ØØ What performance gain can we expect when using 		
	 smarter partitions?

Partitioning quality

CESM sea ice partitioning Optimal partitioning by
computational weight

Balanced partitioning on z-curve

Multi-stage applications: Coupling in APESmate

Multi-level implementation
In a multilevel domain elements depend on their neighbors, whether on the same level or next
coarser and finer level. They frequently exchange information to progress simulation.

In the current Discontinuous-Galerkin implementation, processes first propagate information
from coarser to finer elements. Compute flux between elements and communicate this
information backwards. An element can advance the time step only with flux information from
all its neighbors. Partitioning the octree data structure along a z-curve results in poor level-wise
balance. Processes with unbalanced number of elements per level experience wait time.

ØØ What are alternative execution patterns and how can we model their effects on runtime?

Simulation Techniques and Scientific Computing
Prof. Dr.-Ing. Sabine Roller

