Bringing Neuroscience to HPC

Space Reserved for Affiliation Info

Abstract

- Brain Modelling is a very busy area for HPC research [1, 2, 3, 4, 5]
- Neuroscientific networks feature heavy computations and connectivity
- Neuron models range from black-box approaches
- to electrochemically accurate ODEs [6, 7]
- A new age of HPC-assisted tools are necessary for satisfactory simulation

GOAL1: Develop high-performance neuronal simulators on HPC hardware
GOAL2: Create a robust online service for neuroscientific workloads

HPC Simulator

- Accelerated via OpenMP and MPI libraries
- Extensive usage of vectorized instructions
- Tested on Intel Xeon Phi 1st (KNC), 2nd (KNL) generation and Xeon CPUs [8, 9]
 Simulating realistic, complex networks

Featured Networks with 500 synapses per neuron

BrainFrame System

	Mozilla Firefox					د
	<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tor	ry <u>B</u> ookmarks <u>T</u>	ools <u>H</u> elp			
	↓ jarvis.microlab.ntua.gr:400 ×					
	$\left(\leftarrow \right) \rightarrow \ C \ ()$	→ C ^A i jarvis.microlab.ntua.gr:4000		🚥 🔽 😭 🔍 Search		III\ 🐵 🔤 » 🗉
A	brainframe	► Run 🛃	Download	Vineya	rd USER	?
	Simulators Brainframe Simulator			Heterogeneous Ensemble Load		
	Simulation Platform Xeon Phi		0 %	Intel Xeon Phis	1	150
	Network & Simulation parameters		0	Maxeler DFEs	Users	Threads to Use
	Neuron model Cell Parameters	-				150
	parameter_1=value, parameter_2=value,			Output (need to wait couple of minutes to finish)		
	Synapse model					

- <u>BrainFrame</u>: an online service for conducting accelerated neuroscientific experiments
 - \rightarrow modular, dockerized system for sustainability and adaptability
- Front End: utilizes simple GUI to offer the user two options:
 - \rightarrow quick neuronal network setup (select from drop-down menus) or
 - \rightarrow explicit experiment design (python scripting)
- <u>Middleware:</u> intermediate station:
 - → translates user network configuration based on community-standard Python package for simulation of neural network models (PyNN) [10]
 - → schedules simulation based on backend availability and workload parameters
 - Backend Cloud: heterogeneous ensemble of HPC hardware:
 - \rightarrow backend performance profile depends on experimental setup

Reterences

[1] Markram H.: "The Human Brain Project" in Scientific American, 2012

[2] Fidjeland A. et al: "Nemo: a Platform for Neural Modelling of Spiking Neurons Using GPUs" in IEEE ASAP, 2009

[3] Beyeler M. et al: "CARLsim 3: A User-Friendly and Highly Optimized Library of Neurobiologically Detailed Spiking Neural Networks" in IJCNN, 2015

[4] Nguyen H. et al: "Accelerating Complex Brain-Model Simulations on GPU Platforms" in DATE, 2015

[5] Chatzikonstantis G. et al: "Optimizing extended Hodgkin-Huxley neuron model simulations for a Xeon/Xeon Phi node", IEEE TPDS, 2016
 [6] Izhikevich E. M. et al: "Simple Model of Spiking Neurons" in IEEE Transactions on Neural Networks, 2003

[7] Hodgkin A. L. and Huxley A. F.: "Propagation of Electrical Signals Along Giant Nerve Fibres." in Proceedings of the Royal Society of London, 1952

[8] Jeffers J. and Reinders J.: "Intel Xeon Phi Coprocessor High-Performance Programming", Elsevier, 2013

[9] Jeffers J. and Reinders J.: "Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition", Elsevier, 2016 [10] Davison A. P. et al.: "PyNN: a Common Interface for Neuronal Network Simulators", Frontiers in Neuroinformatics, 2009

Space Reserved for Acknowledgements Info