A First-Principles Approach to Performance and Power Models for Contemporary Multi- and Many-Core Processors

Friedrich-Alexander-University Erlangen-Nuremberg, Computer Architecture Johannes Hofmann <johannes.hofmann@fau.de>

Vision: Understand performance, power, and energy properties of modern processors and recommend best-practices

Improve Execution-Cache-Memory (ECM) Performance Model^[1-4]

- Separate general principles and microarchitecture-dependent behavior into general ECM model and ECM machine models
- Model additional hardware designs
 - Write-through caches
 - Streaming stores
 - Cluster on Die mode
 - Separate frequency domains
- Devise machine models for
 - Intel Haswell- and Broadwell-EP Intel Skylake-SP
 - IBM POWER8
- Victim caches
- Partially and fully overlaping data transfers
- Dynamic Uncore frequency

- AMD Zen (Ryzen, Epyc)
- Reduce ECM model error near the saturation point

Quantitative Power Model^[5]

Quantitative power estimate s.t. active core count, CPU core and Uncore frequencies for arbitrary scalable and saturating steady-state codes

- Full chip power given by sum of baseline and aggregate core power $P_{\rm chip}(f_{\rm Uncore}, f_{\rm core}, \varepsilon_n) = P_{\rm base}(f_{\rm Uncore}) + nP_{\rm core}(f_{\rm core}, \varepsilon_n)$
- Baseline power depends on processor's Uncore frequency $P_{\text{base}}(f_{\text{Uncore}}) = p_0^{\text{base}} + p_1^{\text{base}} f_{\text{Uncore}} + p_2^{\text{base}} f_{\text{Uncore}}^2$
- Per-core power depends on CPU core frequency, code scalability $P_{\text{core}}(f_{\text{core}},\varepsilon_n) = \left(p_0^{\text{core}} + p_1^{\text{core}}f_{\text{core}} + p_2^{\text{core}}f_{\text{core}}^2\right) \cdot \varepsilon_n^{\alpha}$

by an order of magnitude

selected examples

• Validated on Intel Sandy and Ivy Bridge, Haswell, Broadwell, AMD Zen

Model setup

1. Derive baseline power s.t. Uncore freq. by linear extrapolation towards 0 cores

- 2. Fit baseline power parameters using the data obtained in (1)
- 3. Derive core power contribution from empirical data by subtracting baseline estimate (2), then fit core parameters

3.5 [%] 3 2.5

ative

Model validation						Relative model error for DGEMM								
C	GEMM on Xeon E5-2680	STREAM on Xeon E5-2680		on Xeon E5-2680										
<mark>- 125</mark> ן		<u>125</u>	2.7	0.8	0.1	0.1	0.8	0.6	0.5	0.8	1.8			
. -	O Measurement	_ ○ Measurement _	ר <u>א</u> 2.5	0.8	0.1	0.2	0.3	0.2	0.3	1.3	1.3			
100-			<u> </u>	0.6	0.0	0.4	0.0	0.3	0.0	0.8	0.9			
	XL & CHZ		$\simeq 2.3$	1.1	0.7	0.1	0.3	0.0	0.1	0.5	0.8			
- ,		GHZ CITZ	C 2.2	1.0	0.8	0.8	0.5	0.1	0.4	0.7	0.6			
? 75	- 2	-2.7 = 2.2 GHz - 75		1.0	0.4	0.1	0.8	0.0	0.4	0.7	0.3			
-	- tore tore 7 GHZ	- fore fore - CHZ	a 1.9	0.6	1.0	0.8	0.6	0.1	0.9	0.2	0.9			
50-		f re= 1.7 01.4	÷ 1.8	1.1	1.0	1.1	0.9	0.9	0.8	0.5	0.9			
	- Core of -		لا 8 1.7	0.7	0.0	0.1	0.3	0.6	0.5	0.2	0.8			
-			<u> </u>	1.0	0.0	0.7	0.6	0.8	1.3	0.3	1.0			

Derived Energy Model^[5]

An analytic energy model can be derived by combining the ECM model estimate $\Pi_{\rm ECM}$ and the power model estimate $P_{\rm chip}$

$$E(f_{\text{Uncore}}, f_{\text{core}}, n) = \frac{P_{\text{chip}}(f_{\text{Uncore}}, f_{\text{core}}, n, \varepsilon_n)}{\Pi_{\text{ECM}}(f_{\text{Uncore}}, f_{\text{core}}, n)}$$

Analytic deductions

Minimum energy w.r.t. number of active cores n

• scalable codes: use all available cores

$$\frac{\partial E}{\partial n} = -\frac{P_{\text{base}}(f_{\text{Uncore}})}{-n^2 \cdot \Pi_{\text{ECM}}(f_{\text{core}}, f_{\text{Uncore}})} < 0$$

Model validation

MEM

10⁵

time

core 0

core 0

core

core 0

core 1

core 2

10⁴

Empirical observations and best practices

• saturating codes: use number of cores n required to saturate bottleneck

$$E = \frac{P_{\text{base}}(f_{\text{Uncore}}) + n\varepsilon^{\alpha} \cdot P_{\text{core}}(f_{\text{core}}, 1)}{\Pi_{\text{Sat}}}$$

Minimum energy w.r.t. CPU core frequency f

• Optimum frequency subject to clock domains

 $f_{\rm core}^{\rm opt}(n) = \sqrt{\frac{p_0^{\rm base} + np_0^{\rm core}}{p_2^{\rm base} + np_2^{\rm core}}}$

TECHNISCHE FAKULTÄT

References

- [1] J. Hofmann, D. Fey, M. Riedmann, J. Eitzinger, G. Hager, and G. Wellein: Performance analysis of the Kahan-enhanced scalar product on current multi- and manycore processors. Concurrency and Computation: Practice and Experience, ISSN: 1532-0634
- [2] J. Hofmann, D. Fey, J. Eitzinger, G. Hager, and G. Wellein: Analysis of Intel's Haswell Microarchitecture Using the ECM Model and Microbenchmarks Architecture of Computing Systems -ARCS 2016: 29th International Conference, Nuremberg, Germany, April 4-7, 2016
- [3] J. Hofmann, D. Fey: An ECM-based energy-efficiency optimization approach for bandwidth-limited streaming kernels on recent Intel Xeon processors. 4th International Workshop on Energy Efficient Supercomputing, Salt Lake City, UT, USA, November 14, 2016
- [4] J. Hofmann, G. Hager, G. Wellein, D. Fey: An analysis of core- and chip-level architectural features in four generations of Intel server processors. High Performance Computing: 32nd International Conference, ISC High Performance 2017, Frankfurt, Germany, June 18-22, 2017
- [5] J. Hofmann, G. Hager, D. Fey: On the accuracy and usefulness of analytic energy models for contemporary multicore processors. Accepted for High Performance Computing: 33nd International Conference, ISC High Performance 2018, Frankfurt, Germany, June 24-28, 2018