
GLOBAL TASK DATA DEPENDENCIES FOR PGAS APPLICATIONS
<Author Names Hidden for Double-blind Review>

BACKGROUND

<Project> provides an abstraction of the Parti-
tioned Global Address Space (PGAS) program-
ming paradigm based on C++11 by providing
distributed data structures.
The PGAS paradigm decouples data transfer and
synchronization and thus requires explicit syn-
chronization primitives. So far, <Project> relied
on collective operations for synchronization.
Array<int> arr(size());
// fill local part
arr.local[0] = myid();
// wait for everyone to finish
barrier();
// read value from unit 0
auto root_id = arr[0];

Figure 1: Use of collective synchronization in <Project>

RESEARCH GOALS

Figure 2: Goals and requirements for the proposed dis-
tributed task data dependencies.

METHODOLOGY

... ...

... ...

... ...

?

?

?

Above: distributed task graph of a regular 1D
stencil application running on 2 processes. Local
dependencies are created in serial order and are
thus trivial to match (depicted as black lines). De-
pendencies across process boundaries (red lines)
cannot be matched reliably without additional in-
formation from the user as there may be multi-
ple tasks with output dependencies on the same
memory location.

... ...

... ...

... ...

ph=0

ph=1

ph=2

Our proposal: Task Phases
Task phases serve as a logical clock for tasks and
task dependencies that provide the necessary in-
formation to reliably match dependencies across
process boundaries. Similar to barriers, task
phases restore happens-before relations between
tasks, i.e., any task that produces data in memory
location Lk in phase phi−1 has to be executed be-
fore tasks in phase phi that depend on Lk.

REFERENCES

<References removed for double-blind review>

CONTACT INFORMATION

Web <hidden>
Email <hidden>
Phone <hidden>
Github <hidden>

CURRENT STATUS

Distributed data dependencies fulfilling the re-
quirements depicted in Figure 2, supporting:

• Seamless global in/out dependencies
• Flexible copyin dependency

(implemented using get or send/recv)
• Task scheduling priorities
• Global/local task cancellation
• Rescheduling task-yield
• Intermediate dependency matching
• MPI-based active messages for

inter-scheduler communication
• Poll-free waiting for data transfers

FUTURE WORK

• Support for advanced dependencies types
(commutative, concurrent)

• Performance optimizations
• Tool support
• Porting target applications

DISTRIBUTED TASK DATA DEPENDENCIES

Figure 3: Communication scheme between schedulers
on two processes. Dependencies are handled by the
process that ”owns” the referenced memory location.

Local scheduler handle locally created tasks as
well as the dependencies on the local portion
of the global memory space (i in Figure 3).
Upon encountering a remote dependency, the lo-
cal scheduler informs the respective scheduler,
which coordinates the global execution of tasks
with dependencies on this memory location. The
scheduler also handles data hazards by observing
WAR and WAW dependencies.
Regardless of the number of tasks only two
global synchronizations are required to ensure
that 1) all user-specified dependencies and 2) the
resulting data hazards have been communicated.
The task execution happens fully asynchronous.

IMPLEMENTATION AND EVALUATION

for (size_t k = 0; k < num_blocks; ++k) {
if (mat.block(k,k).is_local()) {
async([=](){ potrf(matrix.block(k,k)); },
out(mat.block(k,k)));

}

// advance to next phase
async_barrier();
for (int i = k+1; i < num_blocks; ++i)
if (mat.block(k,i).is_local())
async([=](){

trsm(cache[k][k], matrix.block(k,i)); },
copyin(mat.block(k,k), cache[k][k]),
out(mat.block(k,i)));

// advance to next phase
async_barrier();
for (size_t i = k+1; i < num_blocks; ++i) {
for (size_t j = k+1; j < i; ++j)
if (mat.block(j,i).is_local())
async([=](){

gemm(cache[k][i], cache[k][j], mat.block(j,i)); },
copyin(mat.block(k,i), cache[k][i]),
copyin(mat.block(k,j), cache[k][j]),
out(mat.block(j,i)));

if (mat.block(i,i).is_local())
async([=](){ syrk(cache[k][i], mat.block(i,i)); },
copyin(mat.block(k,i), cache[k][i]),
out(mat.block(i,i)));

}
// advance to next phase
async_barrier();

}
// wait for all tasks to execute
complete();

Figure 4: Blocked Cholesky factorization implemented
using task data dependencies in <Project> (simplified).

 0

 5000

 10000

 15000

 20000

 2 4 8 16 32 64

Pe
rf

o
rm

a
n
ce

 [
G
fl
o
p

/s
]

Number of nodes (x64 cores)

DASH Tasks (Copyin)
DASH Tasks (Prefetch)

DASH+OpenMP
MPI+OpenMP

MPI + DASH Tasks

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 8 16 32

Pe
rf

o
rm

a
n
ce

 [
G
fl
o
p

/s
]

Number of nodes (x24 cores)

DASH Tasks (Copyin)
DASH Tasks (Prefetch)

MPI+OpenMP
MPI + DASH Tasks

Figure 5: Blocked Cholesky Factorization (N=64k,
BS=512) on Oakforest PACS (KNL+Omnipath, left) and
a NEC Linux cluster (Haswell+Infiniband, right)

 50

 55

 60

 65

 70

 75

 80

 85

 1 2 4 8 16 32 64 128 256 512 1024 2048

R
u
n
ti

m
e
 [

s]

Number of nodes (x24 cores)

DASH Tasks (Copyin)
DASH Tasks (Prefetch)

DASH+OpenMP
MPI+OpenMP

MPI
DASH

 1

 10

 100

 1 2 4 8 16 32 64 128 256 512

R
u
n
ti

m
e
 [

s]

Number of nodes (x24 cores)

DASH Tasks (Copyin)
DASH Tasks (Prefetch)

DASH+OpenMP
MPI+OpenMP

MPI
DASH

Figure 6: Weak scaling (4800 rows/node, left) and
strong scaling (48000 rows, right) of a simple 2D sten-
cil with 409600 elements per row on a Cray XC40.

