
Accelerators in a Hybrid HPC World:
How Can Applications Benefit?

Introduction
For quite some time, so-called accelerators are considered to be core
components of successful HPC systems. While the power of GPU inte-
gration paved the way, today’s approaches based on FPGA, ASIC, and
even Quantum Computing technology become more and more important.
The result is a powerful but complex and hybrid HPC world where pro-
gramming such systems is THE challenge. The de-facto HPC program-
ming standards (OpenMP and MPI) used by computer scientists are not
appropriate for life science researchers that prefer high-level support such
as given by Python and R environments. And in the industry world we can
still find demands for application-specific Java interfaces. Our approach
bridges user needs from all three communities by providing tailor-made
interface layers that share commonly needed system components.

Objectives

• Allow scientists to exploit the real computational capabilities of an
HPC System in a transparent manner.

• Empower users from different communities to access HPC re-
sources without changing the way they carry on their experiments.

• Achieve reproducibility proposing a systematic approach to the ex-
periments.

• Using a modular architecture for better interfacing new systems
and technologies.

Prototype System: High-Level Architectural View
The designed architecture is mainly organized in three parts: An interface (on the left) sending http requests to a web server (in the middle) that cares
about the ssh connection to a remote system (on the right).

PROVA!
BACK-END

PROVA!
BACK-END

PROVA!
Web server

PROVA!
Web UI

PROVA!
Web server

HPC cluster

HPC cluster

GPU

FPGA

Manycores

processor

ASIC

Quantum

processor

ssh

ssh http

http

http

http

Accelerators

can be provided

both as local

resource within

the a cluster or

though the

cloud.

Business

User

Life

Scientist

Computer

Scientist

Industry

Academics

Spawn

Notebook
http request

to Prova!

Username

Password

Container

GitHub

Notebook

cells

Local …

unexpensive_function()

…

Remote …

veryExpensive_function()

…

In []:

In []:

1. Start

container

2. Access

notebook

/

Accelerators

The Jupyter block in the architecture is composed of a JupyterHub (jupyterhub.readthedocs.io) and a Jupyter notebook: the scientist uses JupyterHub to
spawn and manage notebooks which are based on a specific container image (Docker/Singularity). The PROVA! notebook extension allows the scientist
to send requests to the web server for executing a notebook cell on a remote system when needed.

Applications
Progress (as of Feb ’18)

• Benchmark of stencil compilers
– Using PROVA! to reproduce and compare results obtained on

different remote HPC systems within the university[1].

Next Steps
• Supervised machine learning for American Option Pricing[2]

– Run different versions of the code on both local and remote
HPC systems using the extended Jupyter notebook.

• Deep Neural Networks for Anomaly Detection in Lung Imaging[3]
– Use the extended Jupyter Notebook to run the GPU implemen-

tation on resources available within the company or from the
cloud and compare the performance.

• Stochastic Optimization for Supply Chain Management
– Execute the code on a remote HPC system from a custom web

application that provides the visualization of the results.

State of PhD work
Progress (as of Feb ’18)

• Experiment execution and reproduction management system using
a software build and installation framework (EasyBuild) and/or con-
tainer solution (Docker/Singularity).

• Implementation of a client/server extension for Jupyter Notebook in-
terfacing with the PROVA!.

Next Steps
• Use JupyterHub for spawning container-based Jupyter Notebooks

and use the container image for running the same experiment of the
remote system.

• Interface PROVA! Back-end with classical and emerging HPC re-
sources provided as cloud service.

• Provide quantitative and qualitative analysis of system performances
and user acceptance.

References
[1] Guerrera, D., Burkhart, H., Maffia, A. Reproducible Stencil Compiler Benchmarks Using PROVA!. In Proceedings of the 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High

Performance Computing Systems, 2016.

[2] Godina, T., Mu, G., Maffia, A., Sun, Y. (2017, September 14-15). Supervised Machine Learning with Control Variate for American Option Pricing. Paper presented at Code4Life Scientific: Data Science Algorithms,
Techniques and Architectures in Healthcare, Poznań, Poland. (http://scientific.code4life.pl)

[3] Krzysztof, K., Szymon, T. (2017, September 14-15). Deep Neural Networks for Anomaly Detection in Lung Imaging - Preliminary Result. Paper presented at Code4Life Scientific: Data Science Algorithms,
Techniques and Architectures in Healthcare, Poznań, Poland. (http://scientific.code4life.pl)

Re-using some of the components provided
by PROVA! (web server and back-end), it
is possible to implement different interfaces
creating more execution workflows.

