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Mixed precision multi-level
approach for FFTs
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Motivation

0 FFT is used for a spectral approach to solve PDEs
0 Medical image registration [3] involves large 3D FFTs
0 Transformation of data is a bottleneck for large scale FFTs
0 Modern hardware has native support for half precision arithmetics
0 High precision not always needed, e.g. for preconditioning
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Figure 1: FFT with a divide and conquer scheme on two distributed nodes using the
Cooley–Tukey algorithm.

0 Lower accuracy reduces communication volume
0 Higher computational throughput for lower accuracy

NVIDIA Tesla P100 NVIDIA Tesla V100
half (FP16) 21.2 TFLOPS 31.3 TFLOPS
float (FP32) 10.6 TFLOPS 15.7 TFLOPS

double (FP64) 5.3 TFLOPS 7.8 TFLOPS
Table 1: Peak performance of NVIDIA Tesla accelerators [5]

Problems with low accuracy

Half precision (FP16) has very low dynamic range

ε min max
half (FP16) 2−10 ≈ 10−3 ≈ 6.1× 10−5 65504
float (FP32) 2−23 ≈ 10−7 ≈ 1.2× 10−38 ≈ 3.4× 1038

double (FP64) 2−52 ≈ 10−16 ≈ 2.2× 10−308 ≈ 1.8× 10308

Table 2: Machine tolerance and range of floating-point values defined by IEEE754 [1].

Range issues

0 FFT scales values by N (N3 in 3D)
0 Large FFTs map values outside of dynamic range
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⇒ pre- and post-scaling only allows for 5123 values in half precision

Accuracy issues

0 The RMS for the FFT is in O(ε
√

log N) [2]
0 Pure 3D FFTs in FP16 are not feasible
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Idea

0 For smooth functions high modes decay fast
0 Split data into a coarse grid for low modes in high accuracy and a fine

grid in lower accuracy
0 Use restriction R and prolongation P, e.g. mean value of neighbors

uc = Rf→c(u)

uf = u − Pc→f (uc)
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Figure 2: Exemplary function values with a sample rate of 16. The restricted values are
shown in blue. The additive surpluses on the fine grid are red.
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Figure 3: Low modes are represented on a coarse grid with high accuracy and high
modes are represented on a fine grid with low accuracy.

Questions

0 Effect of multi-level approach on derivatives
0 Error analysis for mixed precision
0 Performance for large scale FFTs

u = uFP16
f + Pm→f (uFP32

m ) + Pc→f (uFP32
c )
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