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Motivation Idea
® FFT is used for a spectral approach to solve PDEs ® For smooth functions high modes decay fast
® Medical image registration [3] involves large 3D FFTs ® Split data into a coarse grid for low modes in high accuracy and a fine
e Transformation of data is a bottleneck for large scale FFTs grid in lower accuracy
® Modern hardware has native support for half precision arithmetics ® Use restriction R and prolongation P, e.g. mean value of neighbors

® High precision not always needed, e.g. for preconditioning Ue = Ri_c(U)
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Figure 2: Exemplary function values with a sample rate of 16. The restricted values are
shown in blue. The additive surpluses on the fine grid are red.

Figure 1: FFT with a divide and conquer scheme on two distributed nodes using the
Cooley—Tukey algorithm. FP64

® | ower accuracy reduces communication volume
e Higher computational throughput for lower accuracy

NVIDIA Tesla P100 NVIDIA Tesla V100 FP16

half (FP16) 21.2 TFLOPS 31.3 TFLOPS
float (FP32) 10.6 TFLOPS 15.7 TFLOPS . - ; . it i -
double (FP64) 5 3 TELOPS 2 8 TELOPS igure 3: Low modes are represented on a coarse grid with high accuracy and hig

modes are represented on a fine grid with low accuracy.
Table 1: Peak performance of NVIDIA Tesla accelerators [5]

Questions

Problems with low accurac
y e Effect of multi-level approach on derivatives

Half precision (FP16) has very low dynamic range ® Error analysis for mixed precision
_  min max * Performance forlarge scale FFTs
half (FP16) 2—2 ~ 10—: ~ 6.1 % 10—358 65504 . u=ur""® 4 Po (U2 + Pof(u732)
float (FP32) 2—52 ~ 10—16 ~ 1.2 x 10—308 ~ 3.4 X 10308 U # 0P8 P A(05732) + P (05732)
double (FP64) 2>~ 10"'° ~22x 10~ ~ 1.8 x 10 Au # AuFP1® P (AUEP32) + P (AulF32)

Table 2: Machine tolerance and range of floating-point values defined by IEEE754 [1].

Range issues
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