Modelling of dynamic network objects: new approaches and adaptation challenges for future HPC systems

author name + institute

PhD focus

- Parallelization approaches
- Adaptation to heterogeneous parallel computing architectures
- Code optimization
- Solvers based on parallel numerical methods - block difference numerical methods (BDM)
- Simulation model development with DSL

Introduction

- Complex dynamic systems are considered as objects of research, design, automatization, monitoring and control in many subject areas: mechanical engineering, coal mining, metallurgy and other
- Modelling and simulation are needed
- Typically such systems could be represented as dynamic network objects (DNO) - description via graphs, models with different complexity levels (concentrated or distributed parameters)
- Because of computational complexity HPC resources are used for simulation
- High heterogeneity of modern HPC resources allows to use different programming models and so to make modelling process maximum efficient

Challenges

- Parallelization of common used sequential solvers or even their replacement with new and parallel ones
- Code optimization and adaptation to different heterogeneous hardware
- Simplification of the model description and configuration process for the user, who is usually an expert in specific subject area, but not a software/hardware specialist

Proposed approach

- New parallel solvers based on block difference numerical methods (BDM)
- Different code optimisation techniques and other tuning mechanisms
- Usage of domain specific languages (DSL) to separate model description and specific hardware optimisation parts

Simulation model

- Coal mine air ventilation system
- DNO with distributed parameters (DNODP)
- Test model: 8 branches, 6 nodes
- Equation system for each j-branch:

Boundary values (for each wi-node)

- Internal
- ventilators in j-branch (active elements)
- atmosphere

$$
\begin{aligned}
& -\frac{\partial P_{w i}}{\partial t}=\frac{\rho a^{2}}{F_{w i}} \frac{\partial Q_{w i}}{\partial \xi} \\
& P_{w i}=P_{A E I}\left(Q_{J}\right) \\
& P_{w i}=P_{A T M}=\text { const }
\end{aligned}
$$

Block difference methods

- Cauchy-problem: $x^{\prime}=f(t, x), x\left(t_{0}\right)=x_{0}$
- BDM: general decomposition schema (N blocks, k points)

- BDM: 1-step methods

- BDM: multi-steps methods

- BDM: general formula (m-steps, k-points)

$$
u_{n, i}=u_{n, 0}+i \tau\left[\sum_{j=1}^{m} b_{i, j} F_{n, j-m}+\sum_{j=1}^{k} a_{i, j} F_{n, j}\right] \begin{gathered}
i=\overline{1, k} \\
\begin{array}{c}
n=\overline{, N} \\
F_{n, j}=f
\end{array}
\end{gathered}
$$

BDM4 ($m=1, k=4$) - PhD research focus

First experiments, BDM

- DNODP, sequential solver
- Numerical methods:

AB (Adams-Bashforth), RuKu (Runge-Kutta),
EU (Euler), BDM2 (2 points), BDM4 (4 points)

- Time step: $\operatorname{tau}=0.0001 \mathrm{~s}$

- Time step: tau $=0.01 \mathrm{~s}$

- Critical time step, computational time

	Tau critical s			
s	Computational time, s	Steps	Max iterations (tor implicit BDM methods)	
Eu	0.0001	3.96	1000000	
AB	0.01	0.06	10000	
RuKu	0.0001	14.89	1000000	
BDM2	0.03	0.14	1667	9
BDM4	0.03	0.23	834	6

Conclusion

Block difference methods provide:
$>$ High accuracy, convergence
$>$ Less computational steps
> Good relation "accuracy-speed"
Further investigation, parallelization:

- Parallelization of the BDM-solvers using diverse programming models
- Parallelization on the graph level varying the granularity of parallel processes
- Different code optimization techniques

Further investigation, DSL

- Usage of AnyDSL framework as starting point (with "Impala" language inside)
- Creation of DNO-model in DSL, adaptation to different heterogeneous architectures
- Research in the direction of automatic model optimization and adaptation

