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PA – atmosphere pressure

PV – ventilator pressure

Pj, Qj – pressure, airflow

r – flow resistance

Fj – cross-section area

ρ – air density

a – speed of sound

rj(ξp,t) – adjustable resistance 

(on ξp-coordinate)

Pwi = PAEJ(QJ)

Pwi = PAТМ = const
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Boundary values (for each wi-node)

• Internal

• ventilators in j-branch 

(active elements)

• atmosphere

PhD focus

• Parallelization approaches

• Adaptation to heterogeneous parallel 

computing architectures 

• Code optimization

• Solvers based on parallel numerical 

methods – block difference numerical 

methods (BDM)

• Simulation model development with DSL

Introduction

• Complex dynamic systems are 

considered as objects of research, 

design, automatization, monitoring and 

control in many subject areas: 

mechanical engineering, coal mining, 

metallurgy and other 

• Modelling and simulation are needed

• Typically such systems could be 

represented as dynamic network objects 

(DNO) – description via graphs, models 

with different complexity levels 

(concentrated or distributed parameters)   

• Because of computational complexity 

HPC resources are used for simulation

• High heterogeneity of modern HPC 

resources allows to use different 

programming models and so to make 

modelling process maximum efficient

• Coal mine air ventilation system

• DNO with distributed parameters (DNODP)

• Test model: 8 branches, 6 nodes

• Equation system for each j-branch:

First experiments, BDM

Taucritical, s Computational 

time, s

Steps Max iterations 

(for implicit

BDM methods)

Eu 0.0001 3.96 1000000

AB 0.01 0.06 10000

RuKu 0.0001 14.89 1000000

BDM2 0.03 0.14 1667 9

BDM4 0.03 0.23 834 6

• DNODP, sequential solver

• Numerical methods: 

AB (Adams-Bashforth), RuKu (Runge-Kutta), 

EU (Euler), BDM2 (2 points), BDM4 (4 points)

• Time step: tau = 0.0001 s

• Time step: tau = 0.01 s

• Critical time step, computational time

Conclusion

Block difference methods provide:

 High accuracy, convergence

 Less computational steps

 Good relation “accuracy-speed” 

Further investigation, parallelization:

• Parallelization of the BDM-solvers using 

diverse programming models 

• Parallelization on the graph level varying 

the granularity of parallel processes

• Different code optimization techniques

Further investigation, DSL:

• Usage of AnyDSL framework as starting 

point (with “Impala” language inside)

• Creation of DNO-model in DSL, adaptation 

to different heterogeneous architectures

• Research in the direction of automatic 

model optimization and adaptation

Challenges

• Parallelization of common used sequential 

solvers or even their replacement with 

new and parallel ones

• Code optimization and adaptation to 

different heterogeneous hardware

• Simplification of the model description and 

configuration process for the user, who is 

usually an expert in specific subject area, 

but not a software/hardware specialist 

Proposed approach

• New parallel solvers based on block 

difference numerical methods (BDM)

• Different code optimisation techniques 

and other tuning mechanisms

• Usage of domain specific languages 

(DSL) to separate model description and 

specific hardware optimisation parts

Block difference methods

• Cauchy-problem: 

• BDM: general decomposition schema 

(N blocks, k points)

• BDM: 1-step methods

• BDM: multi-steps methods

• BDM: general formula (m-steps, k-points)

• BDM4 (m=1, k=4) – PhD research focus
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N – blocks

F – right side of equation

a,b – coefficients

τ – time step

i – point in block


