
Modelling of dynamic network objects: new approaches

and adaptation challenges for future HPC systems

author name + institute

Author: name + email

University logo

Simulation model

PA

Q1

U1

Q2

U2

Q3 Q4

Q7

Q5 Q6

U4

Q8

PV

U3


































ξ

ρ

ξ
ρ

ξ

j

j

2
j

2

jpj

j

j

2

jj

j

Q

F

a

t

P

t)Q,(r
t

Q

F
Qr

P

PA – atmosphere pressure

PV – ventilator pressure

Pj, Qj – pressure, airflow

r – flow resistance

Fj – cross-section area

ρ – air density

a – speed of sound

rj(ξp,t) – adjustable resistance

(on ξp-coordinate)

Pwi = PAEJ(QJ)

Pwi = PAТМ = const

ξ

ρ











Q

F

a

t

P wi

wi

2
wi

Boundary values (for each wi-node)

• Internal

• ventilators in j-branch

(active elements)

• atmosphere

PhD focus

• Parallelization approaches

• Adaptation to heterogeneous parallel

computing architectures

• Code optimization

• Solvers based on parallel numerical

methods – block difference numerical

methods (BDM)

• Simulation model development with DSL

Introduction

• Complex dynamic systems are

considered as objects of research,

design, automatization, monitoring and

control in many subject areas:

mechanical engineering, coal mining,

metallurgy and other

• Modelling and simulation are needed

• Typically such systems could be

represented as dynamic network objects

(DNO) – description via graphs, models

with different complexity levels

(concentrated or distributed parameters)

• Because of computational complexity

HPC resources are used for simulation

• High heterogeneity of modern HPC

resources allows to use different

programming models and so to make

modelling process maximum efficient

• Coal mine air ventilation system

• DNO with distributed parameters (DNODP)

• Test model: 8 branches, 6 nodes

• Equation system for each j-branch:

First experiments, BDM

Taucritical, s Computational

time, s

Steps Max iterations

(for implicit

BDM methods)

Eu 0.0001 3.96 1000000

AB 0.01 0.06 10000

RuKu 0.0001 14.89 1000000

BDM2 0.03 0.14 1667 9

BDM4 0.03 0.23 834 6

• DNODP, sequential solver

• Numerical methods:

AB (Adams-Bashforth), RuKu (Runge-Kutta),

EU (Euler), BDM2 (2 points), BDM4 (4 points)

• Time step: tau = 0.0001 s

• Time step: tau = 0.01 s

• Critical time step, computational time

Conclusion

Block difference methods provide:

 High accuracy, convergence

 Less computational steps

 Good relation “accuracy-speed”

Further investigation, parallelization:

• Parallelization of the BDM-solvers using

diverse programming models

• Parallelization on the graph level varying

the granularity of parallel processes

• Different code optimization techniques

Further investigation, DSL:

• Usage of AnyDSL framework as starting

point (with “Impala” language inside)

• Creation of DNO-model in DSL, adaptation

to different heterogeneous architectures

• Research in the direction of automatic

model optimization and adaptation

Challenges

• Parallelization of common used sequential

solvers or even their replacement with

new and parallel ones

• Code optimization and adaptation to

different heterogeneous hardware

• Simplification of the model description and

configuration process for the user, who is

usually an expert in specific subject area,

but not a software/hardware specialist

Proposed approach

• New parallel solvers based on block

difference numerical methods (BDM)

• Different code optimisation techniques

and other tuning mechanisms

• Usage of domain specific languages

(DSL) to separate model description and

specific hardware optimisation parts

Block difference methods

• Cauchy-problem:

• BDM: general decomposition schema

(N blocks, k points)

• BDM: 1-step methods

• BDM: multi-steps methods

• BDM: general formula (m-steps, k-points)

• BDM4 (m=1, k=4) – PhD research focus

00)(),,(xtxxtfx 

...
t1,0 t1,1 t1,2 t1,k-1 t1,k = t2,0 t2,1

...
tN-1,k tN,1 tN,2

...
tN,k

tM



Block 1 Block N

.
tn,0 tn,1 tn,k-1

tn,k = tn+1,0 tn+1,1 tn+1,2 tn+1,k

. . .

.
tn,0 tn,1 tn,k-1 tn,k = tn+1,0

tn+1,1 tn+1,k
. . .









 





k

j

jnji

m

j

mjnjinin FaFbiuu
1

,,

1

,,0,, 

),(

,1

,1

,, jnnjn ujtfF

Nn

ki







...
tn-1,k = tn,0

tn,k

)(k

nT

tn,1 tn,2









 





k

j

jnjininin FaFbiuu
1

,,0,10,, 
Nnki ,1,1 

N – blocks

F – right side of equation

a,b – coefficients

τ – time step

i – point in block

