
BONSAI (Benchtesting OpeN Software Autotuning Infrastructure)
Yaohung Mike Tsai, Matthew Bachstein, Piotr Luszczek, Jakub Kurzak, Hartwig Anzt, Mark Gates, Jack Dongarra

INNOVATIVE COMPUTING LABORATORY, UNIVERSITY OF TENNESSEE

The goal of the BONSAI (Benchtesting OpeN Software Autotuning 
Infrastructure) project is to develop a software infrastructure for 
using parallel hybrid systems at any scale to carry out large, 
concurrent autotuning sweeps in order to dramatically accelerate 
the optimization process of computational kernels for GPU 
accelerators and many-core coprocessors.

Overview
These are the core components of BONSAI, aiming to provide an 
infrastructure for kernel developers to rapidly design search space and 
test through massive data sets and data layouts.

LANAI
LANguage for Autotuning Infrastructure
LANAI is a Python-based language for specifying the search space and pruning constraints for 
autotuning kernels. The search space is defined by iterators. An iterator can be an expression or 
deferred from other iterators. Combined with conditions to remove undesired cases, LANAI 
would automatically generate the search space by applying Cartesian product over iterators 
with optimal order. In addition for NVIDIA CUDA kernels, LANAI has built in constants like 
MaxRegistersPerThread for developers to take care of hardware constraints according to the 
architecture of the GPU being used.

BONSAI API
In order to use BONSAI, the user has to divide their program into three parts to fit into provided 
skeleton: (1) Initialization, setting up all variables and data in memory for the kernel, 
(2) Execution, the actual kernel call for the main computation kernel, and (3) Finalization, 
correctness check and clean up the memory. By default, BONSAI will measure the time needed 
to execute the kernel. Additional profiling counters can be enabled through the BONSAI API for 
more detailed analysis. Also, the user can provide other information like numerical error by API 
calls. The result is gathered automatically to generate the autotuning sweep report.

BONSAI RUNTIME
The BONSAI Runtime takes care of the parallel compilation and execution, as well as 
file/memory management. BONSAI will try to use all available GPUs/Accelerators to speed up 
the tuning process. User does not need to handle the job distribution or memory allocation for 
multiple GPUs. This frees users from implementing their own MPI+OpenMP/CUDA/OpenCL 
tuning program and greatly simplifies the compilation process.

Key Features

PARALLEL COMPILATION AND EXECUTION ON CLUSTER
From a single node with multiple GPUs to complicated clusters with separated 
login/complication and computation nodes, BONSAI provides the infrastructure to do parallel 
tuning sweeps on all kind of systems. Users do not need to program for multi-GPU or MPI 
communication. BONSAI automatically distributes all the tuning jobs among available resources. 
BONSAI not only reduces the time to perform the autotuining sweep, but also the time 
programmers spend to set up the tuning work.

PROFILING 
IN DEVELOPMENT
BONSAI is integrated with profiling libraries/tools such as PAPI and CUDA Profiler. BONSAI 
simplifies the task of instrumenting the kernel and provides a simple interface for selecting 
counters to be collected. BONSAI will gather all the information from distributed executions. It 
creates the opportunity for developers to learn more insights about their kernel and the possibility 
to optimize it further.

STATISTICAL ANALYSIS AND VISUALIZATION
IN DEVELOPMENT
We will provide a number of analytical tools and examples to guide the developer in analyzing 
their code. The analytical tools provided with BONSAI will include statistical and machine learning 
tools in addition to a number of visualization utilities. These tools will leverage open-source data 
analysis libraries such as the SciPy stack, R, and Spark based MLlib.

Visualization for Tuning Result of Convolution Layers from Deep Learning

Tuning Works

Y. M. Tsai, P. Luszczek, J. Kurzak, J. Dongarra
Performance-portable Autotuning of Opencl Kernels for Convolutional Layers of Deep Neural Networks
2016 2nd Workshop on Machine Learning in HPC Environments (MLHPC), Salt Lake City, UT, 2016, pp. 9-18. DOI: 
10.1109/MLHPC.2016.005

M. Gates, H. Anzt, J. Kurzak, J. Dongarra
Accelerating Collaborative Filtering Using Concepts 
from High Performance Computing
BigData’15: IEEE International Conference on Big Data, Santa 
Clara, CA, 2015. 
DOI: 10.1109/BigData.2015.7363811

M. Gates, H. Anzt, J. Kurzak, J. Dongarra
Implementation and Tuning of Batched Cholesky 
Factorization and Solve for NVIDIA GPUs
Transactions on Parallel and Distributed Systems, 
27(7):2036-2048, 2015. 
DOI 10.1109/TPDS.2015.2481890

SPONSORED BY
FIND OUT MORE AT

https://bitbucket.org/icl/bonsai


