Cross-architectural Modelling of Power Consumption Using Neural Networks
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predict power consumption within few percents
of the actual power consumption.

We improve accuracy of power consumption pre-
dictions by employing a Neural Networks (NN)
based model

Table 1: Three different microarchitecture implementations
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We have noted that it the same benchmarks is run mul-
tiple times, the overall accuracy of NN model increases
and that accuracy of the NN model increases as we in-
crease number of different benchmarks in the training
set. We have noticed no further increases in accuracy
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Figure 1: Accuracy of power consumption estimation

Table 2: Hardware performance counters used for raw data

Figure 4: Importance of each hardware performance counters in es- tation assigns.

Prior models as per Figure 1: timating power consumption using neural network model References

The input layer consists of processor activity hardware
counters and data activity hardware counters as shown
in Table 2, which we have identified to be the major
sources of power draw. An entire data set using five
benchmark suites was collected for three different micro-
architectures as shown in Table 1.

overestimate or underestimate large number of

Figure 4 suggests that it would be very difficult to use
benchmarks with different frequency to nominal

neural network model developed for one architecture to
estimate power consumption on the other architecture.
Importance of different hardware counters for estimat-
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do not cover the whole spectrum of possible
combinations

ing power consumption is different for different micro-
architectures.

power consumption averaged over application
run-time



