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Introduction, Scope, Summary

• In recent years the compute/memory balance of processors
has been continuously shifting towards compute

•The rise of Deep Learning, which is based on matrix multi-
plication, accelerated this path, especially in terms of single
precision (FP32) and lower precision compute

•An important research question is if this development can
be leveraged for traditional HPC

•We demonstrate that a high order discontinuous Galerkin
solver for seismic wave equations can execute in single pre-
cision without any loss of modeling accuracy when running
application scenarios

•We extended our solver to support the Intel Knights Mill
CPU with 14 TFLOPS of single precision deep-learning per-
formance in its small sparse matrix-matrix kernels

•Compared to the HPC-focused Knights Landing processor
speed-ups of up to 1.6× are possible depending on the sce-
nario

•Knights Mill is therefore even able to match dual socket
top-bin Xeon performance in case of FP32 execution

Kernels

For an efficient execution, two sparse kernels need to be accel-
erated by hard-wiring the sparsity patterns using runtime code
generation:

•K1 : sparse-matrix × 3D-tensor = 3D-tensor, this operation
is needed for multiplication with Jacobians and flux-solvers.
In BLAS-notation, the sparse matrix A is a 9 × 9 matrix,
whereas B and C are dense 3D-tensors.

•K2 : 3D-tensor × sparse-matrix = 3D-tensor, this operation
is needed for multiplication with stiffness or flux matrices.
The dimensions of the sparse matrix B depend on the order
and stage of the integration kernels.

Generator sketch of kernel K1 :

1: nb← ⌈#modes/scratchpad size⌉
2: for all blk = 1 to nb do
3: for all m = 1 to #quantities do
4: a#Entries← rowA[m + 1]− rowA[m]
5: for k = 1 to a#Entries do
6: a[1 : f ]← broadcast(A[rowA[m] + k])
7: for all n = (blk − 1) · scratchpad size to blk ·

scratchpad size do
8: b[1 : f ]← B[colA[rowA[m] + k]][n][1 : f ]
9: C[m][n][1 : f ] ← FMA(a[1 : f ], b[1 :

f ], C[m][n][1 : f ])
10: end for
11: end for
12: end for
13: end for

Generator sketch of kernel K2 :

1: nb← ⌈#modes/scratchpad size⌉
2: for all m = 1 to #quantities do
3: for all blk = 1 to nb do
4: n0← (blk − 1) · scratchpad size
5: for all n = 1 to scratchpad size do cn[1 : f ] ←

C[m][n0 + n][1 : f ] end for
6: for all k = 1 to #modes do
7: for all n = 1 to scratchpad size do
8: b#Entries← colB[n0 + n + 1]− colB[n0 + n]
9: for l = 1 to b#Entries do
10: if rowB[colB[n0 + n] + l] == k then
11: b[1 : f ]← broadcast(B[colB[n0 + n] + l])
12: cn[1 : f ] ← FMA(A[m][k][1 : f ], b[1 :

f ], cn[1 : f ])
13: end if
14: end for
15: end for
16: for all n = 1 to bkszn do C[m][n0+ n][1 : f ]←

cn[1 : f ] end for
17: end for
18: end for
19: end for

Governing Equations and Numerical Results for FP32 vs. FP64

The three-dimensional isotropic elastic wave equations in velocity-stress formulation are given as a system of linear hyperbolic
partial differential equations. As shown in previous work these equations can be solved as series of small sparse matrix matrix
products when applying the ADER-DG machinery for variable convergence rate. Additionally, we leverage the fact that many
of the grand challenges in earthquake system science require large ensembles of geometrically similar forward simulations. Our
solver Sm operates in parallel on m ≤ n different inputs Im = (i1, i2, . . . , im) to obtain a set of observations in a single
execution: Om = (o1, o2, . . . , om) = Sm(Im). This simple idea of fusing m simulations is the basic paradigm in our software.
The advantages of this approach range from higher data-reuse through shared data structures, e.g., the mesh or velocity model,
towards better parallelization opportunities at all levels, as each element in the mesh is represented as a 3d-tensor: modes ×
quantities × fused runs.
We executed for several application benchmarks (HHS1, HSP1a, HSP1b, LOH.1) convergence rates O ∈ {2, . . . , 7} in single
(FP32) and double precision (FP64). We only observed negligible misfits and can conclude that single precision arithmetic is
a sufficient for our wave propagation solver. In total, this led in case of LOH.1 to 6× 2× 9× 3 = 324 synthetic seismograms
for the six orders, two precisions, nine receivers, and three velocity components. An exemplary illustration of our solvers fourth
order solution for the ninth receiver and quantity u of the LOH.1 wave propagation benchmark is shown below:

Leveraging AVX512 Single Precision Deep Learning Oriented Hardware

Knights Landing (knl) vs. Knights Mill (knm) VPU: a symmetric, single-pumped combo VPU is replaced by an asymmetric
(single precision biased) VPU which is double-pumped for high efficiencies on the two-issue wide Xeon Phi frontend. The
chained double-pumped unit can be used by the so-called 4FMA instruction which implements a matrix vector multiplication,
M = 16, N = 1, K = 4.

Only kernel K2 (which consumes most flops) can be potentially accelerated by 4FMA instructions. The detection of a possible
4FMA instruction is carried out by modifying the check in line 10 of kernel K2. Instead of only checking for the current
k when iterating over the modes of a specific quantity, this check is extended as follows: if rowB[colB[n0 + n] + l] == k,
rowB[colB[n0 + n] + l + 1] == k + 1, rowB[colB[n0 + n] + l + 2] == k + 2 and finally rowB[colB[n0 + n] + l + 3] == k + 3
are all true, a 4FMA instruction can be issued. By applying this algorithm several times we can add zero fill-in which increases
the performance by up to 10%.

Multinode Application Performance

We have evaluated the performance on 16 nodes of Intel Xeon Phi 7250 (knl), 16 nodes of dual-socket Xeon Platinum 8180
(SKX, for AVX512 and AVX2), and 16 nodes of Intel Xeon Phi 7295 (knm), all connected by Intel Omni-Path. For higher
orders of convergence the shared L2 cache on knl and knm becomes a bottleneck due to JIT code size, however FP64 knl
and knm deliver the same performance as knl is limited by its narrow frontend. For orders up to O = 5, knm can match the
absolute FP32 performance of dual socket Xeon (much higher power consumption) using 4FMA instructions. Compared to
knl, knm achieves up 1.6X speed-up over knl for the same reason.
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