Deep Learning Hardware Accelerates Fused Discontinuous Galerkin Simulations

Introduction, Scope, Summary

- In recent years the compute/memory balance of processors has been continuously shifting towards compute
- The rise of Deep Learning, which is based on matrix multiplication, accelerated this path, especially in terms of single precision (FP32) and lower precision compute
- An important research question is if this development can be leveraged for traditional HPC
- We demonstrate that a high order discontinuous Galerkin solver for seismic wave equations can execute in single precision without any loss of modeling accuracy when running application scenarios

Governing Equations and Numerical Results for FP32 vs. FP64

The three-dimensional isotropic elastic wave equations in velocity-stress formulation are given as a system of linear hyperbolic partial differential equations. As shown in previous work these equations can be solved as series of small sparse matrix matrix products when applying the ADER-DG machinery for variable convergence rate. Additionally, we leverage the fact that many of the grand challenges in earthquake system science require large ensembles of geometrically similar forward simulations. Our solver S_m operates in parallel on $m \leq n$ different inputs $I_m = (i_1, i_2, \dots, i_m)$ to obtain a set of observations in a single execution: $O_m = (o_1, o_2, \dots, o_m) = S_m(I_m)$. This simple idea of fusing m simulations is the basic paradigm in our software. The advantages of this approach range from higher data-reuse through shared data structures, e.g., the mesh or velocity model, towards better parallelization opportunities at all levels, as each element in the mesh is represented as a 3d-tensor: modes \times quantities \times fused runs.

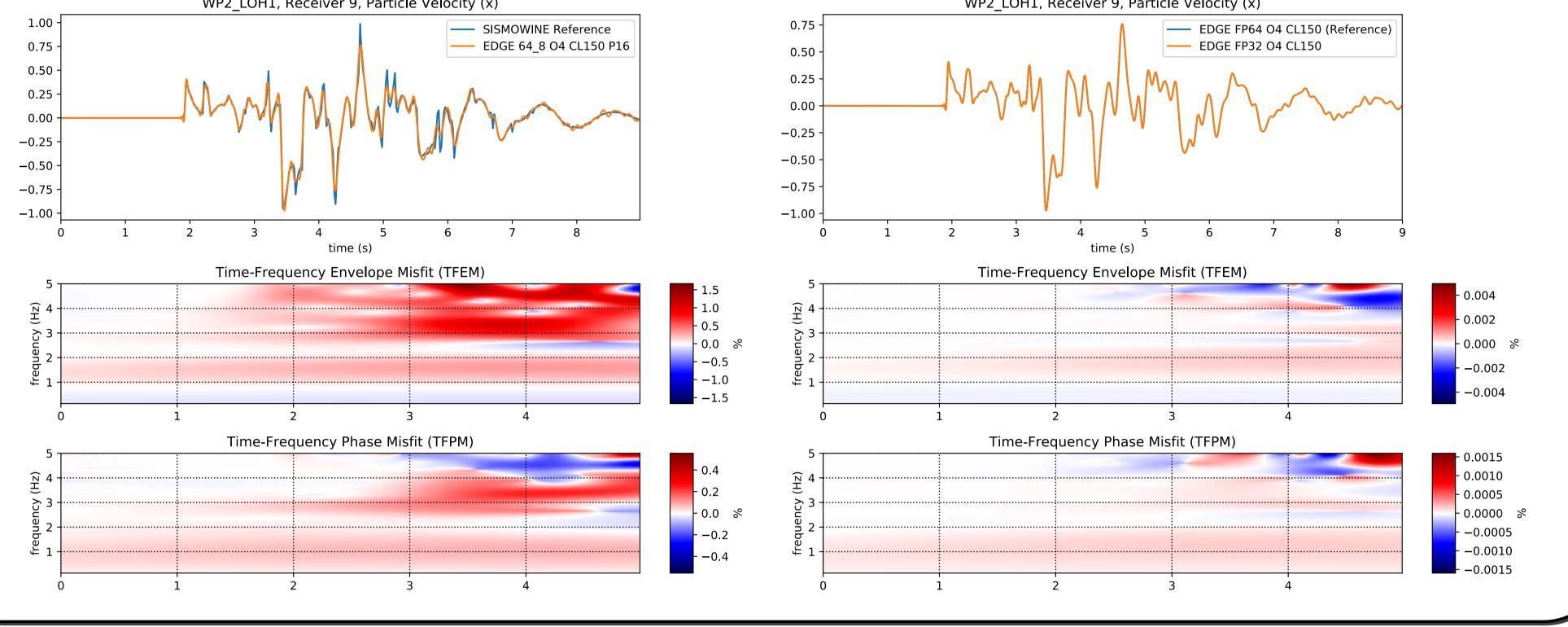
We executed for several application benchmarks (HHS1, HSP1a, HSP1b, LOH.1) convergence rates $\mathcal{O} \in \{2, \ldots, 7\}$ in single (FP32) and double precision (FP64). We only observed negligible misfits and can conclude that single precision arithmetic is a sufficient for our wave propagation solver. In total, this led in case of LOH.1 to $6 \times 2 \times 9 \times 3 = 324$ synthetic seismograms for the six orders, two precisions, nine receivers, and three velocity components. An exemplary illustration of our solvers fourth order solution for the ninth receiver and quantity u of the LOH.1 wave propagation benchmark is shown below: WP2 LOH1, Receiver 9, Particle Velocity (x)

- We extended our solver to support the Intel Knights Mill CPU with 14 TFLOPS of single precision deep-learning performance in its small sparse matrix-matrix kernels
- Compared to the HPC-focused Knights Landing processor speed-ups of up to $1.6 \times$ are possible depending on the scenario
- Knights Mill is therefore even able to match dual socket top-bin Xeon performance in case of FP32 execution

Kernels

For an efficient execution, two sparse kernels need to be accelerated by hard-wiring the sparsity patterns using runtime code generation:

- K1: sparse-matrix \times 3D-tensor = 3D-tensor, this operation is needed for multiplication with Jacobians and flux-solvers. In BLAS-notation, the sparse matrix A is a 9×9 matrix, whereas B and C are dense 3D-tensors.
- K2: 3D-tensor \times sparse-matrix = 3D-tensor, this operation is needed for multiplication with stiffness or flux matrices. The dimensions of the sparse matrix B depend on the order and stage of the integration kernels.



Leveraging AVX512 Single Precision Deep Learning Oriented Hardware

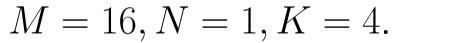
Knights Landing (knl) vs. Knights Mill (knm) VPU: a symmetric, single-pumped combo VPU is replaced by an asymmetric (single precision biased) VPU which is double-pumped for high efficiencies on the two-issue wide Xeon Phi frontend. The chained double-pumped unit can be used by the so-called 4FMA instruction which implements a matrix vector multiplication,

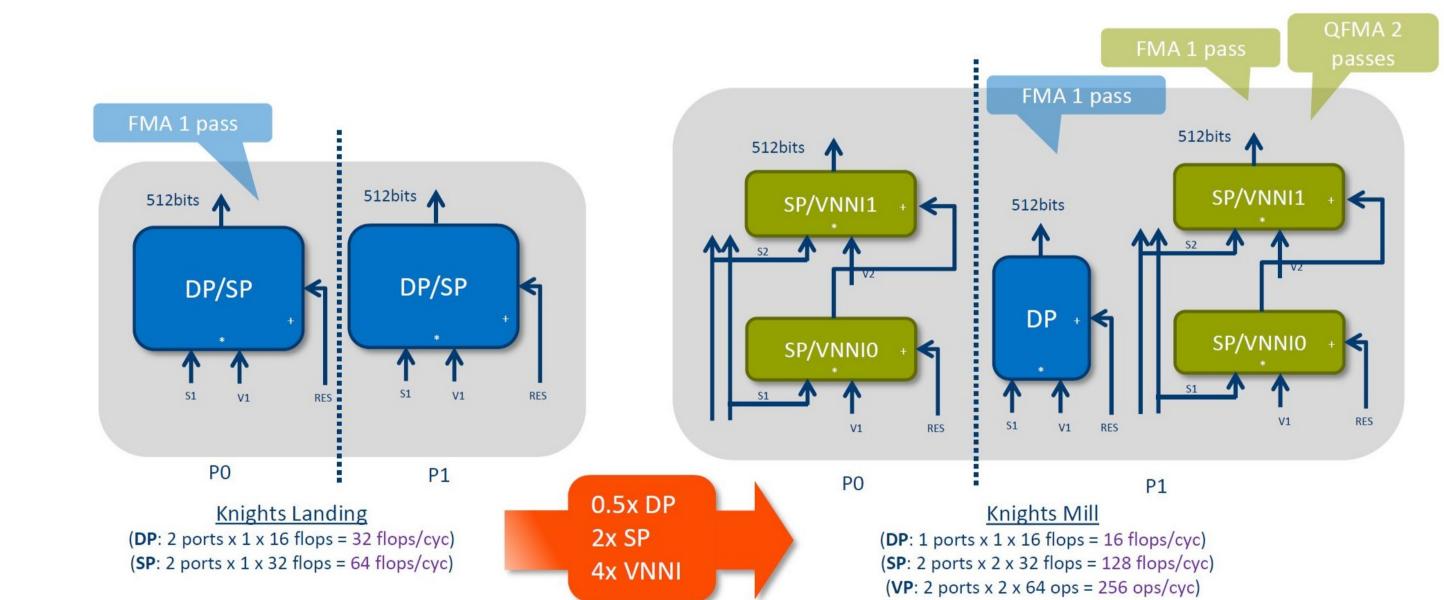
Generator sketch of kernel *K1*:

- 1: $nb \leftarrow [\# modes/scratchpad_size]$
- 2: for all blk = 1 to nb do
- for all m = 1 to #quantities do
- $a_{\#\mathsf{Entries}} \leftarrow \mathsf{row}_A[m+1] \mathsf{row}_A[m]$
- for k = 1 to $a_{\#\text{Entries}}$ do 5:
- $a[1:f] \leftarrow \mathsf{broadcast}(A[\mathsf{row}_A[m]+k])$
- for all $n = (blk 1) \cdot scratchpad_size$ to $blk \cdot$ scratchpad_size **do**
- $b[1:f] \leftarrow B[\mathsf{col}_A[\mathsf{row}_A[m]+k]][n][1:f]$
- $C[m][n][1 : f] \leftarrow \mathsf{FMA}(a[1 : f], b[1 : f])$ [f], C[m][n][1:f])
- end for 10:
- end for 11:
- end for 12:
- 13: **end for**

Generator sketch of kernel *K2*:

- 1: $nb \leftarrow [\# modes/scratchpad_size]$
- 2: for all m = 1 to #quantities do
- for all blk = 1 to nb do <u></u>γ.
- $n_0 \leftarrow (blk 1) \cdot \text{scratchpad}_{size}$
- for all n = 1 to scratchpad_size do $c_n[1 : f] \leftarrow$ $C[m][n_0 + n][1 : f]$ end for
- for all k = 1 to #modes do for all n = 1 to scratchpad_size do 7: $b_{\#\text{Entries}} \leftarrow \operatorname{col}_B[n_0 + n + 1] - \operatorname{col}_B[n_0 + n]$ for l = 1 to $b_{\#\text{Entries}}$ do 9: if $\operatorname{row}_B[\operatorname{col}_B[n_0+n]+l] == k$ then 10: $b[1:f] \leftarrow \mathsf{broadcast}(B[\mathsf{col}_B[n_0+n]+l])$ 11: $c_n[1 : f] \leftarrow \mathsf{FMA}(A[m][k][1 : f], b[1 :$ 12: $f], c_n[1:f])$ end if 13: end for 14:





Only kernel K2 (which consumes most flops) can be potentially accelerated by 4FMA instructions. The detection of a possible 4FMA instruction is carried out by modifying the check in line 10 of kernel K2. Instead of only checking for the current k when iterating over the modes of a specific quantity, this check is extended as follows: if row $_B[col_B[n_0 + n] + l] = k$, $\mathsf{row}_B[\mathsf{col}_B[n_0+n]+l+1] == k+1$, $\mathsf{row}_B[\mathsf{col}_B[n_0+n]+l+2] == k+2$ and finally $\mathsf{row}_B[\mathsf{col}_B[n_0+n]+l+3] == k+3$ are all true, a 4FMA instruction can be issued. By applying this algorithm several times we can add zero fill-in which increases the performance by up to 10%.

Multinode Application Performance

We have evaluated the performance on 16 nodes of Intel Xeon Phi 7250 (knl), 16 nodes of dual-socket Xeon Platinum 8180

- end for 15:
- for all n = 1 to $bksz_n$ do $C[m][n_0 + n][1 : f] \leftarrow$ 16: $c_n[1:f]$ end for
- end for 17:
- end for 18:

19: **end for**

(SKX, for AVX512 and AVX2), and 16 nodes of Intel Xeon Phi 7295 (knm), all connected by Intel Omni-Path. For higher orders of convergence the shared L2 cache on knl and knm becomes a bottleneck due to JIT code size, however FP64 knl and knm deliver the same performance as knl is limited by its narrow frontend. For orders up to $\mathcal{O} = 5$, knm can match the absolute FP32 performance of dual socket Xeon (much higher power consumption) using 4FMA instructions. Compared to knl, knm achieves up 1.6X speed-up over knl for the same reason.

