# GPU-based Parallel PO-SWE Algorithm for the Design of Large-sized Dual-Reflector Antennas 

Saki Matsuo ${ }^{\dagger}$, Masato Gocho ${ }^{\dagger}$, Tetsuya Katase ${ }^{\ddagger}$, Hiroto Ado ${ }^{\ddagger}$, Atsuo Ozaki*

†Information Technology R\&D Center, Mitsubishi Electric Corporation,
${ }^{\ddagger}$ Communication Systems Center, Mitsubishi Electric Corporation,


Large-sized dual-reflector antennas are analyzed to evaluate their performance through long-time simulation using some accurate EM (electromagnetic) methods based on PO (physical optics [1]). To reduce the time/term for the simulation/design, we focused on the parallelization of the fast and accurate hybrid PO-SWE (spherical waveguide expansion [2]) method, which relaxes the computational complexity while maintaining accuracy on a single-node CPU/GPU-embedded system, where each GPU has several thousand cores on a discrete small-sized memory. To perform the hybrid PO-SWE on such a small-sized memory, we developed the CPUs-GPUs distributed algorithm, through which the CPUs iteratively compute the new small-sized regions of the main-reflector and the SWE coefficients of the sub-reflector behind the GPUs-based PO-SWE computation for the pre-computed them. We found that our implementation using 4 GPUs is up to 37 times faster than that using 24-threaded 2 CPUs.

Design Flow of Large-sized Dual-Reflector Antenna


- Complex configuration
- Long time simulation

Long term design

| e.g. $\left\{\begin{array}{l}\text { Configuration Setting } \\ \text { shapes of reflectors } \\ \text { positions of feed and reflectors }\end{array}\right.$ |
| :---: |

Feedback

## Analysis of Antenna Performance

Step. 1 : Computation of SWE coefficient matrix
Step. 2 : Computation of current distribution using PO-SWE integral with its matrix

## Performance Evaluation

## Proposed Parallel Algorithm

To improve the design efficiency while utilizing GPUs on the fast PO-SWE analysis, we implemented the distributed CPUs-GPUs algorithm for PO-SWE method, through which the CPUs iteratively compute the new small-sized/aligned regions of the SWE coefficients that addresses the divided main-reflector to fit the size of the GPU memory (Step.1). The GPUs compute the PO-SWE integral (Step.2) using the pre-computed results behind the CPU's pre-computation for the next region.


Q : \# sampling points on the main-reflector

[1] P. Ramanujam, et al. : Different Methods of PO Analysis in a Dual Reflector Antenna With a Shaped Main Reflector [2] A. Clemente, et al. : Design of a Super Directive Four-Element Compact Antenna Array Using Spherical Wave Expansion


- Performance Evaluation


