

Event Driven Asynchronous Tasks (EDAT)

Events
Fired by the programmer and sent to a process.

An identifier (EID) is associated with events

which is used to correlate tasks dependencies.

Optionally, events can contain data. Events can

be issued locally, to the same process, too.

How’s this different from

Message Passing?
• As well as containing data, events explicitly activate

tasks that depend upon them.

• Tasks are independent and will not interact directly

with other tasks (only via events).

• With MPI collective communication the issue order

on each process matters. EDAT supports collective

events, but these are matched on event id instead.

How’s this different from

other task based models?
• Other task based models are often oriented around

shared memory. Supporting distributed memory

architectures requires the underlying runtime to

make important decisions around communications

that is hidden from the programmer’s view.

• Many task models, (e.g. OpenMP tasks & OmpSs)

require compiler support, EDAT is all library based.

Tasks
A function scheduled by the programmer which

is executed when the specified events

(dependencies) have been received. Tasks can

depend on any number of events, identified by

the event id and the source process. All events

must have arrived before the task will run. The

scheduling of tasks is non-blocking.

Collective events
When sending events instead of the target rank

you can use EDAT_ALL. This sends the event to

all processes and is a broadcast.

When scheduling a task, instead of the source

rank you can use EDAT_ALL. The task depends

on events from all ranks with the specific id and

will only execute once they have been received.

www.intertwine-project.eu

@intertwine_eu

Nick Brown,

Oliver Brown,

Dan Holmes

What’s the idea?
We present a task-based model where tasks are scheduled and depend upon a number of events arriving

before they can execute. The programmer explicitly understands they are working in a distributed

memory environment, interactions being driven via events which can be sent remotely or locally. Events

may or may not have some data associated with them and tasks execute independently from others.

Process 0 Process 1

Data, event identifier (EID),

source

1

2

3

int main() {

 if (edatGetRank() == 0) {

 edatScheduleTask(task1, 0);

 } else if (edatGetRank() == 1) {

 edatScheduleTask(task2, 1, 0, “evt1”);

 edatScheduleTask(task3, 2, 0, “evt2”, 1, “evt3”);

 }

 return 0;

}

void task1(EDAT_Event * events, int num_events) {

 edatFireEvent(NULL, 0, EDAT_NONE, 1, “evt1”);

 int data=33;

 edatFireEvent(&data, 1, EDAT_INT, 1, “evt2”);

}

void task2(EDAT_Event * events, int num_events) {

 int data=100;

 edatFireEvent(&data, 1, EDAT_INT, EDAT_SELF, “evt3”);

}

void task3(EDAT_Event * events, int num_events) {

 printf(“%d\n”, *((int*) events[0].data) + *((int*)

 events[1].data));

}

Task is scheduled on process 0 and has no dependencies, so it

will run on a worker thread as soon as one is available
This task is scheduled on

process 1 and has one

dependency which is an

event with id “evt1” from

process 0

4

How this code executes

void edatFireEvent(void * data, int

number_elements, int data_type, int

target, char * event_id)

void edatScheduleTask(task_function,

int number_dependencies, ...)

A non-blocking call, the schedule function accepts a

variable number of event dependencies, each follows

the int source, char * event_id format.

Use cases
• Codes with irregular communications

• Incrementally apply to existing HPC codes & support

loosely coupled parallelism via asynchronous tasks.

Resilience (ACID compliance): A parallel code’s state can be described by outstanding events and

scheduled tasks. These can be stored in a ledger. For atomicity we can delay a task’s firing of events until

that task has completed which avoids partially completed tasks in the event of hardware failure.
EDAT is open source, github.com/EPCCed/edat

For more information email n.brown@epcc.ed.ac.uk

This task is scheduled on

process 1 and has two

dependencies, an event

with id “evt2” from

process 0 and one from

process 1 with id “evt3”

This task fires an event,

with no payload data to

process 1 with id

“evt1”.

This task fires an event,

with a single integer as

data to process 1 with

id “evt2”.
This task fires an event,

with a single integer as

data to itself with id

“evt3”.

This task extracts out

both events and adds

the associated integer

data together.

Note: Error checking on

the number of events

and data types omitted

for brevity

Process 0

Task 1

(no

dependencies)

Process 1

Task 2

(depends on evt1)

Task 3

(depends on evt2

and evt3)

5

This task can run

immediately as there

are no dependencies

1

Event with id

“evt1” and no

payload data

2

Event with id “evt2”

and the integer value

33 as payload data

3

Event with id “evt3”

fired from task 2 with

the integer value 100

as payload data

4

This task can run once

it has received evt2

from process 0 and

evt3 from process 1

5

This task will run on a

worker thread once it

has received evt1

from process 0

4

Intel 2d stencil benchmark

On ARCHER, a Cray XC30. Strong scaling with 75 million global grid points, weak scaling with 130,000 local grid points

