HPC with Unstructured Meshes on Novel Architectures

Introduction

- Main focus on many-core parallel solvers for discretized linear and non-linear partial differential equations.
- Analyses performed on a set of applications with unstructured discretization based on tetrahedral meshes.
- Evaluations and analyses on both ARM and Intel platforms.

Applications Description

Jacobi solver

The Jacobi solver is a micro-app. We consider the potential problem, $-\nabla^{T}\lambda(x)\nabla u(x) = f(x)$ $\forall x \in \Omega, + \text{Dirichlet B.C. on } \partial\Omega.$ Solution of, $-u''(x, y) = x^2 * sin(2.5 * \pi * y)$

- Domain discretization with triangular elements and linear shape functions.
- Using finite element approach -> linear system of equations Ku = f with a symmetric and positive definite $n \times n$ matrix K.
- Stored in the compressed row storage (CRS) format.

Eikonal Slover

The Eikonal equation is a special case of non-linear Hamilton-Jacobi partial differential equations (PDEs). In this work, we consider the numerical solution of this equation on a 3D domain with an inhomogeneous, anisotropic speed function:

$$\begin{cases} \sqrt{(\nabla \varphi)^{\top} * M * \nabla \varphi} &= 1, \quad \forall x \in \Omega \subset R^{3} \\ \varphi(x) &= T(x), \forall x \in B \subset \Omega \end{cases}$$

- $\varphi(x)$ is the travel time at position x from a collection of given (known) sources on the boundary of the domain.
- M(x) is a 3 * 3 symmetric positive-definite matrix encoding the speed information on Ω .
- B is a set of smooth boundary conditions which adhere to the consistency requirements of the PDE.

CARP

The Cardiac Arrhythmia Research Package (CARP), is a full-sized application for solving the cardiac bidomain equations, consisting of three main components:

- Parabolic solver.
 - Determining the propagation of electrical activity, by the change in transmembrane voltage from the extracellular electric field and current state of the transmembrane voltage.
- Elliptic solver.
- Determines extracellular potential from transmembrane voltage at each time instant.
- Ionic Model

Machines

ThunderX Cluster

Jetson TX1 Cluster

1.30GHz

2.20GHz

Nvidia Tegra X1 SoC

• 2x sockets Cavium ThunderX

• 48x **ARMv8-A** cores @1.8GHz

Intel(R) Xeon Phi(TM) CPU 7210 @

Intel(R) Xeon(R) CPU E5-2650 v4 @

• 4-Plus-1 quad-core **ARM Cortex A-57**

• Is a set of ordinary differential equations in the cell membrane (Ca+,Na+,...).

- **Extrae** Trace generation (BSC).
- **Paraver** Performance visualisation and analysis (BSC) [3].
- **Dimemas** Simulation tool (BSC)
- Performance Application Programming Interface - PAPI.
- Linux profiling with performance counters.
- Likwid

- System noise.
- Process migrating.

Jacobi solver

Problem size: 1024 x 1024. Number of iteration: 1000. Using 4-MPI with 4 Thread each.

Eikonal solver

Improvements

#Execution time (sec.)	#Speea-Up	#Efficienc
49.43	1	1
27.44	1.78	0.89
14.73	3.35	0.84
7.54	6.55	0.82
3.95	12.51	0.78
1.98	24.96	0.78
1.43	34.56	0.72
1.21	40.85	0.64
fficiency more than 70	0% until 48-	cores on
	49.43 27.44 14.73 7.54 3.95 1.98 1.43 1.21	49.43 1 27.44 1.78 14.73 3.35 7.54 6.55 3.95 12.51 1.98 24.96 1.43 34.56 1.21 40.85

Jacobi exe	C
MPI Proces	s
1	
4	
16	
64	
■ Po	r

#Cores	#Total time (sec)	#Elliptic	#Parabolic	#ODE
1	6382	5680	642.7	33.7
2	4656	4313	307.7	16.6
4	2675	2519	134.0	8.42
8	1390	1316	56.5	4.32
16	1080	1036	30.2	2.19
32	901	871	16.9	1.13
64	810	787	10.6	0.59
128	777	756	7.6	0.33
G th	ood scaling re	esults up	o to 16-Oj nderX	oenMl

Guuu
thread
Electr
on a r
tetrah
16192

Parallelization issues

- Memory bandwidth limitation.
- Load imbalances.
- Network interconnection.
- Global problem size.
- MPI message transfer.
- Memory access latencies.

- Two different meshes:
- Rabbit heart 3 mill. tets. Human heart 24 mill. tets.

Use of non-blocking MPI point-to-point communication. Overlapping communication and computation.

Jacobi parallel function Intel Xeon E5.

😕 💿 Useful Duration (@ eikonal.GCCprv			
THREAD 1.1.1				
THREAD 1.2.1				
THREAD 1.2.2				
THREAD 1.3.2				
THREAD 1.4.1				
THREAD 1.4.2				
THREAD 1.5.1				
THREAD 1.6.1				
THREAD 1.6.2			 	
THREAD 1.7.2				
THREAD 1.8.1				
THREAD 1.8.2	💻 💻 '		 	
THREAD 1.9.1				
THREAD 1.10.1				
THREAD 1.10.2			 	
THREAD 1.11.2				
THREAD 1.12.1				
THREAD 1.12.2				
THREAD 1.13.2				
THREAD 1.14.1				
THREAD 1.14.2		7 75 501 55		20. 700. 020
35.287.358 us		7,75 - 501,55		30.789.929 us

Eikonal computation duraction on Mont-Blanc Prototype (MPI).

Domain decomposition approach.

Eikonal Solver Results for Rabbit Heart on ARM and Intel

ThunderX and 64-cores on Xeon Phi.

Jacobi Solver Results

cution on the Mont-Blanc Prototype with 2-thread/MPI

ses	Execution time (seconds)	Speed-Up	Efficiency
	54.52	1	1
	16.41	3.32	0.83
	7.61	7.16	0.45
	5.14	10.60	0.17

oor performance, memory bandwidth nitation and slow node interconnection.

CARP on ThunderX and SuperMUC

romechanic heart beat simulation realistic discretization with 45 Million nedrons on SuperMUC using 2-cores takes 8 minutes.

the memory footprint [1].

Eikonal Solver

- Energy consumed is 4x less on ThunderX compared to Intel Xeon E5.

Future Work and Funding

Future Work:

- Exploit more parallelism via XBraid.
- Analyses on ThunderX2 processors.
- MPI parallelisation fo Eikonal solver.

Funding:

Eikonal instructions per cycle on ThunderX (OpenMP).

Memory footprint reduction.

Efficency drops after all physical cores are used on Xeon Phi

#Cores	#Execution Time (sec.)	#Speed-Up	#Efficiency
1	64.1	1	1
2	35.7	1.97	0.89
4	20.4	3.14	0.78
8	10.6	5.50	0.75
16	5.5	11.65	0.73
32	2.81	22.81	0.71
48	1.85	34.64	0.72
64	1.42	45.14	0.70
96	1.09	58.8	0.61
128	0.90	71.22	0.55
256	0.68	94.2	0.36

Jacobi on ThunderX with 2-thread/MPI

Super-linear speed-up until we hit memory

Efficiency

2.45

0.97

0.66

9.81

15.58

21.2

MPI Processes Execution time (seconds) Speed-Up

16

64

bandwidth.

212

21.60

13.60

5.00

Real breakthrough in performance and energy consumption can be achieved only by reducing

Comparison ARM vs. Intel Excluding Idle Energy Consumption

References

[1] D. Ganellari and G. Haase. Reducing the memory footprint of an Eikonal solver. 2017 International Conference on HPCS. [2] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra, and Sh. Moore. Measuring Energy and Power with PAPI. PASA Workshop, 2012. [3] Pillet, V., Labarta, J., Cortes, T., Girona, S., Paraver: A tool to visualize and analyze parallel code. In: Proceedings of WoTUG-18:

transputer and occam developments. vol. 44, pp.17-31, 1995.