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Current state of practice
• Log entry messages are unstructured[1]

• Most of log entry messages are repetitive (high frequency)[2]

• Manual analysis is not efficient for large scale computing systems[4]

• Automatic classification requires pre-classified/labeled sample logs

• Available methods are system-specific[5]

Goal
• Automatic classification of system logs

Sample system log entries

starting acron

starting monitor

Acron started on 2018-03-01

Jobs will be executed sequentially

Normal exit (3 jobs run)

finished acron

(root) CMD (run-parts)

Proposed classification approach

Marking common terms in 
system log entries

(marking terms as invariant)

Parentheses and quotations

Functions

File/application addresses

Dates, Hours, IP addresses

Names, Numbers

Classifying log entries
into classes, based on 

Levenshtein[3] similarity metric

Live demo and

sample script:
ghiasvand.net/u/isc18

Datasets  1 month of system logs

1. 108 nodes (    1,665,029 entries)

2. 100 nodes (    1,699,237 entries)

3. 100 nodes (    3,555,088 entries)

4. 99 nodes (    3,795,660 entries)

5. 270 nodes (    4,549,687 entries)

6. 677 nodes (  15,264,701 entries)

Classes
722

546

568

637

622

860

Automatic
Classification

Evaluation and preliminary results

2001 to 2108 1100 to 1199 5100 to 5199 6001 to 6099 1001 to 1270

# Raw entries 1665029 1699237 3555088 3795660 4549687

# Classes 722 546 568 637 622
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• Number of generated classes remains almost 
identical

• Heterogeneity of nodes has no significance on 
the number of classes

• High frequency log entries improve classification
• 41% of classes are common in all datasets
• 63% of classes are common in several sets
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1 year of system logs

7.      99 nodes (136,609,978 entries) 1090

Conclusion
• Automatic classification of system logs is possible

• Low frequency log entries reduce the overall classification 

accuracy

• No relation between number of log entries and number of 

automatically generated classes

• Strong relation between log frequency and classifiers accuracy

(sshd:session): session closed for root

Job `cron.daily' terminated 96734

Job `cron.weakly' terminated 537352

(sshd:session): session closed for siavash

Job `cron.hourly' terminated 241325

(sshd:session): session closed for florina

(sshd:session): session closed for s125342

Job `cron.daily' terminated 14038

CLASS 1

#PARA#: session closed for root

#PARA#: session closed for siavash

#PARA#: session closed for florina

#PARA#: session closed for s125342

CLASS 1

#PARA#: session closed for #VARI#

CLASS 2

Job `cron.hourly' terminated #DGIT#

Job `cron.daily' terminated #DGIT#

Job `cron.weakly' terminated #DGIT#

Job `cron.daily' terminated #DGIT#

CLASS 2

Job #VARI# terminated #DGIT#

Sample system log entries

RegEx 1

(\(.+?\))\: #: session closed for (.+)

RegEx 2

Job (.+) terminated ([0-9]+)

Future work
• Addressing entries with two terms and syslog entries

that form blocks
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Contributions
• The approach does not require data pre-classification

and labeling

• General approach

Harmonizing
differences across 

entries of the same class

Refining and adjusting 
the resulting regular 

expressions


