
Level-3 routine

Automatic Generation of
Full-Set Batched BLAS

ISC2018 June 24-28, Frankfurt, Germany

Yusuke Hirota(1 (yusuke.hirota@riken.jp)
Daichi Mukunoki(1,2 (daichi.mukunoki@riken.jp)
Toshiyuki Imamura(1 (imamura.toshiyuki@riken.jp)
1) RIKEN Advanced Institute for Computational Science
2) Tokyo Woman’s Christian University

• Batched Basic Linear Algebra Subroutine (batched BLAS): a new BLAS interface
which computes multiple independent BLAS operations as a single subroutine [1]

• On many-core processors, a small size problem may not utilize the computation
power of all the cores. Batched BLAS is a solution to utilize many cores effectively

• Some of high-demanded batched BLAS routines (mostly level-3 operations) have
been implemented for CPU/XeonPhi [2] and GPUs [3][4][5], but a full set of the BLAS
routines (including level-1/2/3 routines) has not been provided yet

• In this study, we propose an efficient development method to develop a full set of
batched BLAS routines using automatic code generation with some existing
standard BLAS implementation such as Intel MKL

• This is the first implementation of the level 1-2-3 full-set variable size Batched
BLAS (vbatched, Intel MKL style) as far as we know

References:
[1] J. Dongarra et al., “The Design and Performance of Batched BLAS on Modern High-Performance
Computing Systems”, ICCS2017, 2017
[2] Intel MKL Team, “Compact Batched BLAS”, http://www.netlib.org/utk/people/JackDongarra/WEB-
PAGES/Batched-BLAS-2017/talk17-costa.pdf, 2017
[3] A. Abdelfattah, “Performance, Design, and Autotuning of Batched GEMM for GPUs”, ISC2016, 2016
[4] University of Tennessee, “MAGMA”, http://icl.eecs.utk.edu/magma/
[5] NVIDIA, “CUBLAS LIBRARY User Guide”, DU-06702-001_v9.1, 2018,
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf

Acknowledgement:
This study is supported by the FLAGSHIP 2020 project.

• The first implementation of the level 1-2-3 full-set variable size Batched
(vbatched) BLAS

• An efficient development method to generate a full set of batched BLAS
routines using automatic code generation with some existing standard
BLAS implementation

• Our evaluation demonstrated that the auto-generated batched BLAS
routines achieved competitive performance with standard BLAS

• Our results suggest that such an automatic generation would be an
effective method to develop batched BLAS routines for future architectures

• There is still plenty of room for improvement in batch scheduling
• We plan to utilize this study for helping the development of Batched BLAS

on our next generation supercomputers

4. Conclusion and Future Work

3. Performance Evaluation

1. Introduction
Argument Description Standard

BLAS

Batched BLAS
NVIDIA
cuBLAS

MAGMA BLAS
Batched

MAGMA BLAS
VBatched

Intel
MKL

HANDLE context handler -- cublasHandle_t -- -- --
TRANSA op (A) char char char char* char*
TRANSB op (B) char char char char* char*
M Rows of op(A)/C int int int int* int*
N Columns of op(B)/C int int int int* int*
K Columns of op(A)/rows of op(B) int int int int* int*
ALPHA alpha double double* double double* double*
A input matrix A double* double** double** double** double**
LDA leading dimension of A int int int int* int*
B input matrix B double* double** double** double** double**
LDB Leading dimension of B int int int int* int*
BETA beta double double* double double* double*
C input/output matrix C double* double** double** double** double**
LDC leading dimension of C int int int int* int*
BATCHCOUNT number of operations -- -- int int --
QUEUE queue to execute in -- -- magma_queue_t -- --
BATCH_OPTS batched style (fixed or variable) -- -- -- enum --
INFO error handling -- -- -- int* --
GROUP_COUNT number of groups -- -- -- -- int
GROUP_SIZES number of operations per group -- -- -- -- int*

*This table was created referencing [2] and [3]

Interfaces of standard & batched DGEMM

Our current implementation supports Intel
MKL style variable size batched interface

l Cost definition and scheduling
• Cost of each BLAS call is estimated by its number of FLOPs
• BLAS operations are allocated to threads by a greedy

scheduling (see the below figure)

l Automatic code generation

Code generation script
(Python)

$ python batched_blas.py
batched_blas_data.csv

IN OUT

1. Evaluate the cost of all BLAS operations
2. Allocate the BLAS operation which has the

largest cost in unassigned ones to a thread
whose total cost is smallest in all threads

3. Repeat 2. until all BLAS operations are assigned

void cblas_dgemm_batch(const CBLAS_LAYOUT layout,
const CBLAS_TRANSPOSE* transa, const CBLAS_TRANSPOSE* transb,
const int* m, const int* n, const int* k, const double* alpha, const double ** a, const int* lda,
const double ** b, const int* ldb, const double* beta, double ** c, const int* ldc,
const int group_count, const int *group_size)

void,cblas_dgemm
CBLAS_LAYOUT,layout,a,CBLAS_TRANSPOSE,transa,g,CBLAS_TRANSPOSE,transb,g,int,m,g,int
,n,g,int,k,g,double,alpha,g, double *,a,l,int,lda,g,double *,b,l,int,ldb,g,double,beta,g,double *,c,l,int,ldc,g
get_cost_n1n2n3,m,n,k
...

2. Implementation

Scheduling template
batched_blas_schedule.c

BLAS routine definition
batched_blas_data.csv

BLAS cost definition
batched_blas_cost.c

Batched BLAS
source files

• Makefile
• cblas_caxpy_batch.c
• cblas_ccopy_batch.c
• cblas_dgemm_batch.c
• ...

• Batched BLAS source files are generated by our automatic
code generator implemented in Python based on (1) routine
definition, (2) cost definition, and (3) scheduling template files

Ø Batched BLAS API (subroutine name, arguments, etc.) can be
modified easily by modifying the BLAS routine definition file

Ø Scheduling strategy for batched tasks can be modified
depending on the target architecture by modifying the
scheduling template

• Our current implementation was generated from Intel MKL’s
standard BLAS implementation and supports Intel MKL style
variable size batched interface

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200

G
Fl

op
s

n

DTRSM

batched
non-batched (MKL)

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400

G
Fl

op
s

n

DGEMV

batched
non-batched (MKL)

0

1

2

3

4

5

6

7

0 1000 2000 3000

G
Fl

op
s

n

DAXPY

batched
non-batched (MKL)

0

1

2

3

4

5

6

7

8

0 1000 2000 3000

G
Fl

op
s

n

DDOT

batched
non-batched (MKL)

0

200

400

600

800

1,000

1,200

1,400

1,600

0 50 100 150 200

G
Fl

op
s

n

DGEMM
batched
non-batched (MKL)
batched (MKL)

• We compared the performance of our batched BLAS routines
generated from Intel MKL using our method with non-batched
MKL routines (Intel MKL 17.0.2)

• Target platform: Intel Xeon Phi 7210 (Knights Landing, 1.3GHz,
64 cores, 64 threads), MCDRAM was used in flat-mode
(numactrl --membind=1)

Level-2 routine Level-1 routine

• Batch count: 1000, group count: 1, problem size: m=n=k (GEMM & TRSM), m=n
(GEMV), n (AXPY & DOT)

• Scalar values (alpha & beta) are randomly generated but constant within a group
• Leading dimensions are randomly decided (e.g. m <= lda <= 1.5*m) but constant

within a group
• Matrices for batched computations are allocated on memory sequentially

