
ProPE – A joint effort to establish a unified service infrastructure for
Performance Engineering in German HPC-Centers

G. Wellein, J. Eitzinger, T. Röhl
University of Erlangen-Nürnberg

Erlangen Regional Computing Center (RRZE)

M. Müller, D. Schürhoff, B. Thoma
RWTH Aachen University

IT Center (RWTH Aachen University)

W. Nagel, R. Dietrich, F. Winkler
Technical University Dresden

Centre for Information Services and
High Performance Computing(ZIH)Grant Nr. 01IH13009 Duration: 03/2017 – 02/2020

Overview and Partners
HPC competence in German HPC centers is distributed
across the country. The Gauss-Allianz is an initiative to
integrate and organize TIER 2/3 HPC landscape in
Germany. Furthermore there are multiple local efforts:
bwHPC, KONWIHR, HKHLR, HLRN and JARA-HPC.
Our contribution is to integrate with and built on already
existing efforts and further drive the final goal of an
hierarchical and yet integrated German HPC
infrastructure with an emphasis on Performance-
Engineering.
Partners
• RRZE (University Erlangen-Nuremberg)
• IT Center (RWTH Aachen University)
• ZIH (Technical University Dresden)
Associated Partners
• KONWIHR
• TU Munich (Prof. Bungartz)
• Forschungszentrum Jülich
• Technical University Bergakademie Freiberg

ProPE Project Structure

Analysis

Pattern

ModelValidation

Optimization

Performance Engineering Process

Scientist
Application
Hardware

Performance
Insight

Process Management & Governance

HPC-literate
Scientist

Tuned
application

While the project does not have enough
manpower to fully unroll all of the points
it will create a blueprint and develop
the necessary tools and processes.

Important ingredients will be show-
cases by
• Carrying out real Performance

Projects
• Organizing tutorials and researcher

exchanges between sites
• Establishing system-wide job specific

performance profiling infrastructures

Performance
Engineering Process Management Monitoring

Training Knowlegde transferProject Management

Structured PE-Process

The core activity of analyzing and optimizing
application performance is guided by a
systematic PE-Process. At its core are typical
performance limiting settings called
performance patterns. To validate and to get a
quantitative view of a pattern white box
performance models are employed.
Identifying a performance pattern is achieved
by a set of hardware performance counter
metrics but might also involve static code
analysis and benchmarking results.

More
information?

Job Performance Monitoring

• Permanent light-weight monitoring
• Short-term and long-term data analysis
• Characterization of jobs and applications
• Detection of pathological performance behavior
• Live and post-mortem visualization

Node

Data-
Collection
Daemon

Batch System

Job Metadata

Service VM

Job View

System View

Job Data

Job Summary
Table

Short-term Storage

Time-Series
Data

Analysis VM

Performance
Footprint

Long-term Storage

Time-Series
Data

Acquisition Collection Analysis Visualization

Performance
Maps

Timelines

Integrated Job and System View

Grafana

Distributed PE Support Infrastructure
Establish multi-tier distributed process management service
and support structures that seamlessly integrate local and
remote support levels to provide “in-depth” expertise
distributed across sites.
1. 1st level support of local site (A) receives costumer request
2. Request is handed over to local 2nd level HPC support team
3. Request is transferred to cross-site ticket tool if additional

competence is needed
4. Site (B and/or C) with

expertise processes
the ticket

5. 2nd level HPC support
team processes ticket
finalization

2

(C
us

to
m

er
-)

In
qu

iry

A 1st *A 2nd

*B 2nd

*C 2nd

1

C
ro

ss
-S

ite
 T

ic
ke

t S
ys

te
m

al
l s

up
po

rte
rs

 h
av

e
ac

ce
ss

Knowledge
base

3

4

4

Distributed PE Support Infrastructure
Establish multi-tier distributed process management service
and support structures that seamlessly integrate local and
remote support levels to provide “in-depth” expertise
distributed across sites.
1. 1st level support of local site (A) receives costumer request
2. Request is handed over to local 2nd level HPC support team
3. Request is transferred to cross-site ticket tool if additional

competence is needed
4. Site (B and/or C) with

expertise processes
the ticket

5. 2nd level HPC support
team processes ticket
finalization

2

(C
us

to
m

er
-)

In
qu

iry

A 1st *A 2nd

*B 2nd

*C 2nd

1

C
ro

ss
-S

ite
 T

ic
ke

t S
ys

te
m

al
l s

up
po

rte
rs

 h
av

e
ac

ce
ss

Knowledge
base

3

4

4

Documentation and Dissemination
Building a central hub, including a knowledgebase
with HPC and Performance Engineering materials,
sorted to addressing different target groups.
Currently starting by lowering the entry barrier into
HPC providing a documentation aimed at
beginners, comprehensive materials will follow,
detailing the structured PE process complemented
by related materials and case studies.

10
0

10
1

10
2

10
3

10
4

10
5

Dataset Size [kB]

0

10

20

30

C
y

cl
es

 p
er

 C
ac

h
e

L
in

e

Naive (Compiler)
Kahan (AVX)
Kahan (AVX/FMA3)
Kahan (AVX/FMA3 v2)

10
0

10
1

10
2

10
3

10
4

10
5

Dataset Size [kB]

0

5

10

15

20

25

C
y

cl
es

 p
er

 C
ac

h
e

L
in

e

Naive (Compiler)
Kahan (AVX)
Kahan (AVX/FMA3)
Kahan (AVX/FMA3 v2)

10
1

10
2

10
3

Dataset Size [kB]

0

20

40

60

80

C
y

cl
es

 p
er

 C
ac

h
e

L
in

e

Kahan (L1)
Kahan (L2)
Kahan (MEM)

T
p
=

1
 c

2
T

p
=

 2
 c

T
p
=

 5
 c

2
T

p
=

 1
0

 c

T
p
=

 2
0

 c

Broadwell-EPHaswell-EP Knights Corner

Figure 3. Single-threaded measurements (symbols) and ECM model predictions (horizontal lines) for varying dataset sizes on Haswell-EP
(left), Broadwell-EP (middle), and Knights Corner (right). Dotted line represents ECM prediction without latency penalty Tp.

in TnOL = 2c. At 32 B/c, TL1L2 = 4c for two cache lines. As pre-
viously determined, the sustained memory bandwidth of 175 GB/s
corresponds to a transfer time of 0.4 c/CL; thus TL2Mem = 0.8c.

We found that it is necessary to use individual kernels, each spe-
cially crafted for a special cache hierarchy, to obtain the best perfor-
mance for the individual cache levels. The kernel that assumes data
is coming from L1 has no additional prefetching instructions. For
data in the L2 cache, we employ two software prefetching instruc-
tions, fetching cache lines A and B eight loop iterations ahead from
the L2 into the L1 cache. These two prefetch instruction can be
paired with arithmetic instructions and thus do not change in-core
execution time (see lines two and eight in Figure 4). For data com-
ing from main memory, we prefetch cache lines 64 iterations ahead
from main memory to the L2 cache (two software prefetch instruc-
tions: one for array A and one for array B) and also keep the previous
prefetching strategy of fetching cache lines eight iterations ahead
from L2 to the L1 cache. The two prefetch instructions can no
longer be paired, because we run out of unpaired arithmetic instruc-
tions: The first FMA and the first add is paired with the mov instruc-
tions that fetch data from the L1 cache into registers; the second
and third add/sub is paired with the software prefetch instructions
from the L2 to the L1 cache. The in-core execution time is thus
extended by two additional cycles for the two prefetch instructions
that fetch data from main memory to the L2 cache. The ECM input
for Knights Corner thus is {4∥2+2L2 +2MEM |4 |0.8+2+20} c.
Note that the composition of TnOL is dependent on where input
data in coming from : in the L1 kernel, we are retiring just two load
instructions so TnOL=2 c; in the kernel optimized for data coming
from the L2 cache, we need to include two prefetching instructions
so TnOL=2 c+2 c=4 c; finally, for the memory-optimized kernel, we
have to include two more prefetching instructions, so TnOL=6 c.

5. Results and model validation

5.1 Single Core

Measurements results for the Haswell-EP machine are shown in
the left plot in Figure 4.2. We find that the measurements for the
compiler-generated version for the naive dot product match the
prediction quite well for data in L1 cache. The performance in
the L2 cache is slightly worse than predicted. This behavior is
consistent with previous findings where we were not able to obtain

the advertised bandwidth of 64 B/c between the L1 and L2 cache
for a wide range of streaming kernels [10]. As mentioned earlier,
we find that the performance of the prediction that assumes no
latency effects (dotted line) is too optimistic—although the effect
is not as pronounced as on Broadwell-EP. The same effect can be
observed for in-memory performance. Because data has to pass
the Uncore interconnect twice (once to get the data from main
memory into the last-level cache segment that is derived from its
address and again to get from that L3 segment to the requesting
core’s L2 cache), the latency penalty is doubled. The AVX Kahan-
enhanced dot product kernel behaves as expected and takes eight
cycles per cache line in both the L1 and L2 caches as predicted by
the model. The green line shows the four-way unrolled AVX/FMA3
version described previously and shown on the left in Figure 4.2.
As predicted by the model, this version offers no benefits over the
non-FMA3 version. Our optimized kernel (shown on the right in
Figure 4.2) is shown in blue; it performs as predicted at 6.4 c/CL
in the L2 and L3 caches. As predicted by our model, there is no
performance penalty in comparison to the naive dot product in
any of the Kahan-enhanced kernels (except for the scalar kernel
generated by the compiler and not shown in Figure 4.2) for data
coming from the L3 cache or main memory.

The results for Broadwell-EP are shown in the middle of Fig-
ure 4.2. The core-local performance predictions, i.e. for data com-
ing from the L1 and the L2 caches, for all four kernels match the
model—as was the case for Haswell-EP. Starting with the L3 cache
(note the different range on the y-axis in comparison to the Haswell
plot on the left), we can see more penalty cycles on Broadwell-EP
than on Haswell-EP. As discussed before, we attribute this to the
higher number of ring participants of the 22-core (11 per domain in
cluster on die mode) chip vs. the 14 cores (7 per domain in cluster
on die mode) Haswell chip.

The results for Knights Corner, shown on the right of Figure 4.2
support the case of specially adjusted kernels for each cache hierar-
chy, although we find the impact to be negligible for some kernels.
As described before, the two prefetch instructions for the L2 op-
timized kernel can be paired with arithmetic instructions. This is
validated by the performance of the L1 and L2 kernel being iden-
tical for data in the L1 cache. This is contrasted by the change in
performance as soon as data is coming from L2. The L2 kernel
stays close to the model prediction while the L1-optimized kernels

We want to talk with you
about your HPC applications

and PE Problem!

Efficient implementation of Kahan-enhanced dot
product on recent Intel multi- and many-core processors

Johannes Hofmann, Dietmar Fey

Chair for Computer Architecture
University of Erlangen–Nuremberg

{johannes.hofmann,dietmar.fey}@fau.de

Jan Treibig, Georg Hager, Gerhard Wellein

Erlangen Regional Computing Center
University of Erlangen–Nuremberg

{jan.treibig,georg.hager,gerhard.wellein}@fau.de

Abstract

We investigate the performance characteristics of a numerically en-
hanced scalar product (dot) kernel loop that uses the Kahan algo-
rithm to compensate for numerical errors, and describe efficient
SIMD-vectorized implementations on the last two generations of
Intel Xeon Server processors and the Intel Xeon Phi (codename
KNC) many-core processor. Using low-level instruction analysis
and the execution-cache-memory (ECM) performance model we
pinpoint the relevant performance bottlenecks for single-core and
thread-parallel execution, and predict performance and saturation
behavior. In a detailed analysis we investigate the potential of the
FMA3 instruction set to further speed up the dot product. We find
that on recent Intel processors with more and more cores per die
and especially on the KNC processor the ECM model must be aug-
mented with latency effects when transferring data over the ring-
bus interconnect.

Keywords Haswell, Broadwell, Knights Corner, Xeon Phi, dot
product, performance, SIMD, ECM model

1. Introduction and related work

Accumulating finite-precision floating-point numbers in a scalar
variable is a common operation in computational science and en-
gineering. The consequences in terms of accuracy are inherent to
the number representation and have been well known and studied
for a long time [5]. There is a number of summation algorithms
that enhance accuracy while maintaining an acceptable through-
put [6, 12], of which Kahan [11] is probably the most popular one.
However, the topic is still subject to active research [3, 4, 13, 17].
A straightforward solution to the inherent accuracy problems is
arbitrary-precision floating point arithmetic, which comes at a sig-
nificant performance penalty. Naive summation and arbitrary preci-
sion arithmetic are at opposite ends of a broad spectrum of options,
and balancing performance vs. accuracy is a key concern when se-
lecting a specific solution.

Naive summation, which simply adds each successive number
in sequence to an accumulator, requires appropriate unrolling for
Single Instruction Multiple Data (SIMD) vectorization and pipelin-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c⃝ 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

ing. The necessary code transformations are performed automati-
cally by modern compilers, which results in optimal in-core per-
formance. Such a code quickly saturates the memory bandwidth of
modern multi-core CPUs when the data is in memory.

This paper investigates implementations of the scalar product,
a kernel which is relevant in many numerical algorithms. Start-
ing from an optimal naive implementation it considers SIMD-
vectorized versions of the Kahan algorithm using various SIMD
instruction set extensions on last two generations of Intel multi-
core processors and the Intel Xeon Phi Manycore processor. This
study shows that the commonly experienced subpar performance
for Kahan [3] using compiler-generated code is caused by the com-
piler failing to generate acceptable code for this algorithm. If im-
plemented correctly, the Kahan summation comes at almost no cost
compared to a naive implementation even when the data is in cache.
Using an analytic performance model we point out the conditions
under which Kahan comes for free, and we predict the single core
performance in all memory hierarchy levels as well as the scaling
behavior across the cores of a chip.

This paper is a modified version of a previously published pa-
per on Kahan [8]. Additions to the previous paper is a coverage
of the Intel Broadwell-EP server processor and for the first time
the application of the ECM performance model on the Intel Xeon
Phi manycore processor. Furthermore we present an in-detail anal-
ysis of using the FMA3 based fused-multiply-add instructions for
speeding up the dot product. We introduce a latency extension in
the ECM model for the L3 cache and main memory. This additional
latency term takes account for the fact that data accesses travers-
ing the multi ring-bus interconnects on modern chips are not fully
bandwidth bound.

This paper is organized as follows. In Sect. 3 we give an
overview of the hardware used for analysis and benchmarking.
Section 2 introduces the execution-cache-memory (ECM) perfor-
mance model, which is used in Sect. 4 to describe different variants
of the naive and the Kahan scalar product. Section 5 gives per-
formance results and validates the models. Section 6 provides a
conclusion and some comments on the possible extension of our
work.

2. The ECM Performance Model

The execution-cache-memory (ECM) model [7, 9, 14, 15] is an an-
alytic performance model that uses hardware architecture specifi-
cations and few measurements as input. The model estimates the
numbers of CPU cycles required to execute a number of iterations
of a loop on a single core of a multi- or many-core chip. The pre-
diction is made up of contributions of the in-core execution time
Tcore, i.e. the time spent executing instructions in the core under the
assumption that all data resides in the L1 cache, and the transfer

Step 1 Analysis: Understanding observed
performance

Pattern

MicrobenchmarkingHardware/Instruction
set architecture

Algorithm/Code
Analysis

Application
Benchmarking

Performance
patterns are

typical
performance
limiting motifs

The set of input data indicating
a pattern is its signature

Step 2 Formulate Model: Validate pattern and
get quantitative insight

May be skipped !
Pattern

Performance Model

Qualitative view

Quantitative view

Validation Traces/HW metrics

W
ro

ng
pa

tte
rn

Optimize for better
resource utilization

Eliminate non-
expedient activity

Pattern

Performance Model

Performance
improves until next
bottleneck is hit

Improves
Performance

Step 3 Optimization: Improve utilization of
available resources

