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Inductive power transfer is nowadays a popular and widely used technology,
e.g. for charging mobile phones and heating cook ware. In such systems usu-
ally coplanar spiral coils are used in order to generate the necessary magnetic
fields. However, with regard to energy efficiency it is desirable to start from an
optimal magnetic field and derive the necessary coil geometry from that. Math-
ematically, this poses an ill-posed problem which is difficult so solve analytically
or numerically respectively.
In our previous work [1], we have shown that optimized coil geometries can be
obtained by recurrently solving Biot-Savart’s law and optimizing a parameter-
ized geometry by means of Simulated Annealing [2]. However, once additional
magnetic components, like field focusing elements, are added to the magnetic

circuit, the calculation of the magnetic field using solely Biot-Savart’s law is no
longer valid. In that case more suitable calculation methods like the finite ele-
ment method (FEM) have to be used which drastically increases the computation
time of the whole optimization process.
In order to solve this problem, we suggest a method that uses a neural network
providing a surrogate model for the complex magnetic circuit. Once trained the
surrogate model can replace a time-consuming FEM simulation still providing an
estimate of the magnetic field. As the calculation of the surrogate model will
be several times faster than a full FEM simulation this will speed up the entire
optimization process.

Simple optimization method based on solving Biot-Savart’s law
Instead of trying to solve the mathematically ill-posed problem of finding a coil
geometry from a given magnetic field we have set up an optimization approach
where optimized coil geometries are obtained by recurrently solving Biot-Savart’s
law for a parameterized coil geometry using Simulated Annealing (Fig. 1). Start-
ing from an arbitrary initial geometry the optimal geometry is obtained after a
few thousand iterations (Fig. 2).
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Fig. 1: The optimization loop

Fig. 2: Starting from a desired magnetic field (here: arbitrarily chosen) a coil can be found using
Simulated Annealing.

Advanced method for complex magnetic setups
Once a magnetic setup is used which is more complex than a simple coil, com-
putationally expensive FEM calculations must be used instead of solving Biot-
Savart’s law (Fig. 3). For example, a setup containing ferrite materials is cur-
rently used in induction hobs in order to increase the magnetic field intensity at
the position of the cook ware.
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Fig. 3: Advanced method with replaced Biot-Savart law
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Fig. 4: Estimated computation times of different methods

Coils combined with e.g. ferrite materials lead to non-linear material models
which increases the overall computational complexity. In this case a lower bound
for the computation time is of the order of 10 minutes. However, depending on
the magnetic setup simulation times might be considerably higher. (Fig. 4)

In contrast to FEM simulations, calculating a prediction based on a neural network
is computationally much less demanding. Consequently, with our neural network
approach we can determine the coil geometry of a complex magnetic setup using
the same computation time as for the simple coil geometry.

Proposed neural network architecture
We propose an autoencoder-like neuronal network architecture [3] (Fig. 5). The
input is a raster graphics-like, 2D representation of the coil. The output is a 2D rep-
resentation of the resulting magnetic field. The encoder part of the autoencoder
consists of several convolutional layers [4] which allow the network to extract
important features of the coil geometry. The subsequent decoder layers are used
to calculate the magnetic field based on this features.

Fig. 5: The propsed neuronal network architecture

Parallel training
The training data must be generated using FEM simulations but those are inde-
pendent of the optimization process and therefore can be carried out in parallel.
Training the network involves minimizing its prediction error E in dependence of
the synapses’ weights W which is typically done based on a gradient descent
algorithm according to Eq. (1):

Wi+1 := Wi − η∇E (W ) (1)

This can be parallelized either by distributing the calculation of one gradient de-
scent step (Fig. 6) or by running several minimizers like stochastic gradient de-
scent (SGD) either in a synchronous [5] or asynchronous [6] modus (Fig. 7).
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Fig. 6: Distributed gradient calculation
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Fig. 7: Distributed asynchronous SGD

‘DeepDreaming’ of a coil geometry
Previously, it was not possible to use a gradient-based method to solve the prob-
lem of finding a coil geometry since no functional description between an arbitrary
coil geometry and the generated magnetic field was known. Once the neural net-
work is trained it itself represents such a functional description. Thus, it is feasible
to use gradient-based algorithms instead of the previously mentioned Simulated
Annealing method.
It has been shown that the backpropagation algorithm that is used for training
a neural network can be used for this purpose as well. This approach has re-
cently been used to examine the features learned by neural networks for image
classification [7]. Here, stochastic gradient descent is used to perform the gra-
dient descent with respect to the inputs of one network layer while keeping the
network’s weights fixed.

Application in other fields
Meta-heuristic optimization methods, like Simulated Annealing, are widely used
and not specific to the inverse coil design problem described here. The presented
approach can be applied to any problem that can be represented by a model, e.g.
a simulation, that maps a set of parameters, e.g. the parameterized coil geome-
try, to a set of properties, e.g. the magnetic field.
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Workpackages
1. Implementation of an optimization approach based on Biot-Savart’s law for simple coils
2. Implementation of a neural network that reproduces a 2D raster image-like representation

of a coil
3. Implementation of a network that predicts the magnetic field based on a 2D raster image-like

representation of a coil
4. Expanding the implementation to consider complex magnetic setups
5. Expanding the implementation for 3D coils
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