
Prof. Dr. Matthias S. Müller, Joachim Protze
Dr. Christian Terboven, Simon Schwitanski
RWTH Aachen University, IT Center and Chair for
High-Performance Computing, Germany
mueller@itc.rwth-aachen.de

Prof. Dr. Taisuke Boku, Dr. Hitoshi Murai
Dr. Miwako Tsuji
Centers for Computational Sciences at Uni-
versity of Tsukuba and RIKEN, Japan
taisuke@cs.tsukuba.ac.jp

Prof. Dr. Serge G. Petiton, Prof. Dr. Nahid Emad
Maison de la Simulation and
LILLE 1 University, France

serge.petiton@univ-lille1.fr

Maison de la Simulation

M XYMUST Correctness Checking for YML and XMP Programs

An SPPEXA Project funded by DFG, ANR&JST

Exascale Systems consist of

tens of thousands of compute nodes + accelerators

Hierarchy of Compute and Data require

multi-level parallel programs, for instance MPI+X
important: user productivity in parallel programs

Opportunities for new Paradigms examples

Japan’s Exascale Language: XMP
Workflow Language YML Correctness checking

Aspects of MYX

Correctness Checking of PGAS, distributed and shared memory
Guidance on the development of parallel programming languages

gu
ide

Motivation

XMP: PGAS, distributed memory with global-view and local-view

•XMPT: XMP tools
interface modeled
after the OpenMP
tools interface

•XMPT events: The
XMP runtime no-
tifies an interested
tool about any en-
countered directive

•Definition of XMPT
will finally be in-
cluded in XMP spec-
ification

pragma xmp nodes p[*]
int main(void)
{
pragma xmp task on p[0:3]

{
pragma xmp barrier

}

pragma xmp barrier
pragma xmp task on p[0]

{
printf ("PASS\n");

}
return 0;

}

barrier-
events

task-
begin-
event

barrier-
events task-

begin-
event

task-
end-
event

task-
end-
event

Fig.1: XMPT events provided for an example XMP program

XMPT events are designed to be used by correctness as well as performance analysis.

Correctness analysis:
• enable productivity improvements in program-
ming for Exascale by means of scalable correct-
ness checking of XMP-programs

• one-sided communication, global data access
• analyze the semantics expressed by the XMP con-
trol flow directives and identify semantic issues

Performance analysis:
• a tracing tool like ScoreP can log
event information and use the data
to visualize the performance of exe-
cution.

• events provide source code reference
• tool can bind own objects on context

Tools Interface for XMP

•MYX builds on successful preliminary work and collaboration
• FP3C: CNRS-JST French-Japanese collaboration on YML and XMP for over 10 years
• JST-CREST: Japanese Exascale research program supporting XMP and related acceler-
ator programming environment

•MUST: scalable correctness checking tool for MPI (and OpenMP in development)

Consortium

YvetteML (YML): graph of components
language to express parallelism at high level
•Any parallel program can be encapsulated
as a component for YML

• Strong support to design reusable compo-
nents

MUST: scalable runtime correctness check-
ing for parallel programs
• Scalability achieved by distributed analy-
sis in a tree-based overlay network

•MUST analysis is applied on a per com-
ponent basis to YML programs

XMP+YML = Hierarchical and

Scalable Programming Model

Correctness checking for

XMP in XMP+YML

XMP provides the tool

interface XMPT for analyses

MUST checks correctness

for XMP using XMPT

YML:
workflow environment

YML orchestrates

multiple applications

XMP parallelizes YML tasks

MUST:
correctness checking

tool for MPI applications

XMP:
PGAS based parallel

programming language

XMP, YML and MUST

Parallel Programs can exhibit a wide range of errors
• from simple mistakes (e.g. invalid API arguments) to complex errors (deadlocks)
Runtime error detection is most practical and improves programmer productivity
• deployment can be transparent to the user
• no exponential analysis time of model checking
MUST correctness checker
•MPI profiling interface: PnMPI
•OpenMP tools interface: OMPT
• capable of tracing any MPI communication from any middleware runtime
Extension in the scope of MYX
• support for PGAS and workflow model by means of supporting one-sided MPI communi-
cation and using XMPT as source of information for runtime correctness analysis

Correctness Checking

Increase core counts challenge purely message-based parallel models Hybrid and PGAS
models overcome scalability limits, such as message rates

•XMP: PGAS, dis-
tributed memory
with global-view and
local-view

•YML: graph of
components lan-
guage, allows for the
expression of par-
allelism at highest
level

ru
nt
im

e
[se

co
nd

s]

number of processors for each task

Fig.2: Combination of models increases scalability over the use of a single
model for BGJ code (developed with TOTAL) on K-Computer (32 k × 32 k
matrix size)

The more parallelism is expressed, the higher the chance of errors being made.
Time of programming error search and fix: productivity loss!
→ Automatic correctness checking may be used to avoid that.

Challenge Addressed by XMP+YML

