
1 ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
2 Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic
3 Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto, Japan

P. Valenta 1, 2, M. Danielová 1, O. Klimo 1, 2, S.V. Bulanov 1, 3

Thorough understanding of ultra-intense laser-plasma interaction may

enable new routes in fundamental research as well as a wide range of

applications [1]. However, such systems involve collective behavior of

particles in self-consistent electromagnetic fields which is, in general,

complex and strongly non-linear problem that can be investigated only

with the help of numerical simulation.

An exponential increase of computational throughput of

supercomputers enables researchers to perform simulations with

unprecedented accuracy. Using the conventional post-processing

approach of data analysis, such simulations would require extremely

large amount of data to be stored on a persistent storage. The storage

bandwidth performance, however, has not grown up as rapidly as the

computational power. In practice, the data coming from the simulations

have to be stored only at several time-steps or at much coarser

resolution than the original data, the rest is just discarded. Therefore, a

significant part of information may be potentially lost.

The technique where the simulation data are concurrently analyzed

and visualized while it is being generated is usually referred to as in

situ processing. In situ processing could circumvent the bottleneck of

data transfer. By coupling the visualization and simulation together,

one may process and analyze the simulation data at high spatial and

temporal resolutions without the necessity of involving the storage

resources.

Recently, we have instrumented the code EPOCH [2] with

the ParaView Catalyst [3]. EPOCH is massively parallel, multi-

dimensional plasma physics simulation code based on the particle-in-

cell (PIC) method. ParaView Catalyst is a library that has been

designed for in situ coupling of numerical codes with the state-of-the-

art visualization system. Here we present our implementation strategy,

performance analyses and demonstrate the in situ capabilities on

several large-scale laser-plasma simulations.

[1] G. A. Mourou, T. Tajima and S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

[2] T. D. Arber et al., Plasma Phys. Control. Fusion 57, 11 (2015)

[3] A. C. Bauer, B. Geveci and W. Schroeder, ParaView Catalyst User’s Guide, Kitware, Inc. 

(2017)

[4] O. Rubel et al., IEEE Computer Graphics and Applications 36, 3 (2016)

[5] W. Schroeder, K. Martin and B. Lorensen, The Visualization Toolkit: An Object-Oriented 

Approach to 3D Graphics, 4th Edition, Kitware, Inc. (2006)

[6] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 1 (2009)

[7] R. Neutze et al., Nature 406, 752 (2000)

[8] S. V. Bulanov et al., Physics - Uspekhi 56, 429 (2013)

[9] E. W. Bethel, H. Childs, C. Hansen, High Performance Visualization: Enabling Extreme-

Scale Scientific Insight, Chapman & Hall/CRC (2012)

Type of output Runtime (hh:mm:ss) Total size

No I/O 01:46:07 0.0

Full Dataset (SDF) 36:42:52 8.2 TB

Slice (VTM) 02:14:07 19.5 GB

Iso-surface (VTM) 02:27:47 115.1 GB

Plot over line (PVTP) 01:53:12 17.5 MB

Image (PNG) * 01:54:27 13.8 MB

Figure 2: (a) Plot over line filter applied on the incident and reflected light.

(b), (c) Rendered images of the phase space. (d) Electron

density and laser electric field showing the formation of plasma

mirrors in the interactive mode using ParaView GUI. (e), (f) 3D

laser-plasma interaction displayed using volume rendering.

Table 1: Comparison of compute time and I/O cost for several data

processing operations. *Images rendered at 1080p using software

renderer.

 This work was supported by the project High Field Initiative (CZ.02.1.01/0.0/0.0/15

003/0000449) from the European Regional Development Fund.

 Computational resources were provided by the ECLIPSE cluster of the ELI Beamlines.

 The development of the EPOCH code was funded in part by the UK EPSRC grants

EP/G054950/1, EP/G056803/1, EP/G055165/1 and EP/M022463/1.

The EPOCH code instrumented with Catalyst benefits from various 

new capabilities. It can produce a wide range of outputs (Fig. 1):

 Full datasets

 Extracted datasets (slices, iso-surfaces, etc.)

 Derived datasets (streamlines, vector fields, etc.)

 Charts (plots along a line, histograms, etc.)

 Quantities (minimum or maximum values, etc.)

 Images

All these operations are prescribed in the visualization pipelines and

executed only at user defined intervals or in response to specific

conditions or events in the simulation. Analysis and visualization is

then performed in place and in parallel, which results in much faster

time to insight into the investigated phenomena than using traditional

approaches.

In addition, the code can be run in two main modes of operation –

batch mode and interactive mode. In the batch mode, the code

executes the visualization pipelines automatically. In the interactive

mode, the user can connect to Catalyst using the ParaView GUI and

control the simulation. Since the user can interactively explore the data

as it is being generated, this provides an invaluable tool for scientific

insight as well as for debugging of simulation codes. Both two modes

can be run simultaneously.

We have analyzed the performance of the instrumented code in

terms of compute time and I/O cost for certain analysis operations on a

test 3D simulation. Then we have compared the results with the

identical simulation run which outputs the data that would have to be

stored for the same analysis using conventional post-processing

approach. The simulation dumped three field quantities (E, B, J) at

relatively high frequency (each tenth iteration out of 2100) and in

double precision. All test simulations were executed on 16 nodes of the

ELI Beamlines computer cluster. Each node contains 16 Haswell-EP

cores and 128 GB DDR4 RAM. Nodes of the cluster are connected by

a fully non-blocking fat-tree Infiniband QDR network, with 40 Gbps

bandwidth. The storage bandwidth performance is approx. 1.8 GB/s.

The results are shown in Tab. 1. As can be clearly seen, the

simulation spends approx. 95 % of the total time on I/O operations and

requires around 8.2 TB of disk space in the case of dumping whole

datasets for post-processing. On the other hand, the ratio between

computation and I/O operations regarding the individual Catalyst filters

is much more reasonable. Therefore, using the right visualization

pipelines to extract the features of interest, one can drastically reduce

the I/O and speed-up the simulation.

Within this work, we have coupled the plasma physics simulation

code EPOCH with the in situ library ParaView Catalyst, we have

outlined the implementation strategy and carried out performance

analyses. Then we have used the instrumented code for several large-

scale simulations of relativistic flying plasma mirrors.

In situ visualization is expected to enable a wide range of new

interactive applications in the near future. In addition, as HPC moves

towards the exascale era, in situ approach is widely predicted to

become an indispensable tool for speed-up of large-scale simulations

and more efficient use of modern super-computing resources [9].

The effect of in situ analysis on PIC codes has been extensively

studied before [4]. Within this work, the EPOCH code has been

coupled with ParaView Catalyst via so-called adaptor. Adaptor is a

simulation interface, which should be separated from the main code in

order not to disturb it and to simplify the build process.

The EPOCH adaptor uses Catalyst C++ application programming

interface to implement the following three methods:

The first method, which is called at the initial phase of the

simulation, initializes Catalyst input channels and loads preconfigured

visualization pipelines. There are multiple input channels provided.

One channel is reserved for the underlying Cartesian grid, on which all

the field quantities are calculated. Other channels are reserved for

particles and their number depends on how many particle species the

simulation involves. This approach ensures that the Catalyst pipelines

can output results based on the field information only, on particular

particle species information only or on arbitrary combination of inputs.

Visualization pipelines decide what operations to perform on the

data and how to output desired results. In these pipelines, one can

benefit from all the post-processing capabilities that ParaView offers.

They may also contain the IP address and the port number of

the ParaView server if the user wants to enable so-called live

visualization. The pipeline may be hardcoded or in the form of a

Python script that can be generated using the ParaView graphical user

interface (GUI).

The second method, which is called at each simulation time-step,

builds all the necessary data structures and invokes the data

processing specified in loaded pipelines. Since the ParaView is built on

the standard visualization toolkit VTK [5], the simulation internal data

structures have to be transferred into the VTK data structures. The

Cartesian computational grid and its decomposition including ghost

cells are represented by vtkMultiBlockDataSet and vtkRectilinearGrid,

respectively. Each particle species is represented by distributed vtkUn-
structuredGrid containing only points and VTK_VERTEX cells that

index them. VTK data structures have to be recalculated only when the

local domain changes (e.g. when particle cross the boundary of the

domain or using load-balancing).

The Cartesian grid contains three field quantities – the electric field

vector (E), the magnetic field vector (B) and the current density vector

(J). To avoid deep-copying of arrays from the simulation

data structures, the adaptor takes advantage of the structure-of-arrays

memory layout using the vtkSOADataArrayTemplate class. This ensu-

res that the adaptor will efficiently reuse the simulation memory and

only a negligible amount of additional memory is used in

creating VTK data structures.

In the following, we demonstrate the capabilities of the

code EPOCH instrumented with ParaView Catalyst. The goal was to

determine the impact of using in situ diagnostics on the interpretation

of scientific results.

We have chosen to model relativistic flying plasma mirrors (RFM), a

concept based on the reflection of counter-propagating laser beam

from thin dense electron layers traveling with velocities close to the

speed of light. Due to the double Doppler effect, the reflected wave is

compressed, amplified and its frequency is up-shifted. Generated

sources of coherent electromagnetic radiation are of great demand for

innovative time-resolved application experiments [6, 7]. Various

schemes described in theoretical as well as experimental studies have

proven the feasibility of this concept [8].

In this case, the in situ analysis might be particularly useful since the

standard PIC simulations require extremely high spatial and temporal

resolution to accurately describe a large band of frequencies and, at

the end of the day, the main part of information is carried by only a

small fraction of reflected radiation.

We have performed several large-scale 2D and 3D simulations

using the EPOCH code instrumented with Catalyst corresponding to

the ongoing research of relativistic flying mirrors. Fig. 2 shows certain

characteristics that have been obtained in situ using visualization

pipelines.

Each particle contains the vector of its position that is linked with

one vertex of the corresponding unstructured grid. In addition, the

particle contains vector of its momentum and weight, which is a scalar

quantity that determines how many real particles it represents.

The last method is used at the end of the simulation to release all

the Catalyst resources. All three methods are then incorporated to the

main code using preprocessor directives.

Figure 1: EPOCH workflow for in situ visualization using ParaView

Catalyst.

(a)

(b)

(d)

(c)

(e) (f)


