Towards Supporting Heterogeneous Hardware in GROMACS

L. Morgenstern'?, A. Beckmann?, |. Kabadshow?

'Operating Systems Group, Faculty of Computer Science, Chemnitz University of Technology
“Institute for Advanced Simulation, Jiilich Supercomputing Centre, Research Centre Jiilich

Project - GROMEX (2016 - 2019)

Molecular dynamics (MD) has become a vital research method in biochemistry and materials science. As part of SPPEXA, GROMEX (GROMACS on the Exascale)
aims to develop a flexible and unified tool-box in the field of MD simulations on the exascale. In MD, the fast multipole method (FMM) is used to reduce the
complexity of the computation of pairwise long-range interactions. Since the problem size is typically fixed by the physical size of molecules, MD applications target
strong scaling. Thus, the computational effort per compute node is very low and MD applications tend to be latency- and synchronization-critical. To meet the
requirements of latency-critical applications, we need to consider hardware properties such as non-uniform memory access (NUMA).

Approach 1 - Work Stealing

Work stealing is a load-balancing approach for task-based applications. As soon as it runs out of work, a thread may steal and execute tasks from other threads.
Provided that the overhead for stealing tasks is sufficiently low, this leads to a shorter time to solution. In NUMA-systems this overhead depends on the location of
the thread relative to the location of the task it attempts to steal. To analyze the tradeoff between load-balancing and NUMA-awareness, we present the following
work stealing policies:

Steal from arbitrary NUMA-nodes (ALL) ALL PNG NGO
Ng > No Ny > Ng Ng > Ny
Preferably steal from local NUMA-node (PNG) ><: TR <
Steal from local NUMA-node only (NGO) 1 > N Ny = > N N » N
Approach 2 - Data and Thread Placement

To distribute the workload as equally as possible, the assignment of data to threads is realized through equal
partitioning of the FMM-tree levels. Based thereon, data locality is assured by placing a thread and its data on the N
same NUMA-node. Sticking to these principles, we present the data and thread placement policies Scatter Principally
(SP), Compact Ideally (Cl) and Compact Scatter (CS). MOM L2L
When using SP, a classical load-balancing approach is applied. In general case, this means that all NUMA-nodes are i)
used, with an equal amount of threads being assigned to each NUMA-node. Using Cl means in turn that as few as =

possible NUMA-nodes are used. This is implemented by assigning threads to a single NUMA-node as long as the ’MZLR
NUMA-node has got idle cores. Not before all non-SMT (Simultaneous Multi-Threading) cores of a NUMA-node are [./.*

busy, the next NUMA-node is filled up with threads. CS is an experimental combination of SP and CI that serves the

analysis of NUMA dependent on SMT. 1T 111111
Besides modifying the source code to implement NUMA-awareness, the command line tool numactl has been used

with options cpunodebind=0 and membind=0 to place threads and data on NUMA-node 0. However, this is only
reasonable, if the number of threads is smaller than the number of cores on NUMA-node 0.

Preliminary Results

/ 14 28 42 36 1000 particles, multipoleorder p=3, depth d=3 on 2 Intel Xeon E5-2680 v4 CPUs with 14
cores and 2-way SMT; 4 (Cluster-on-Die) NUMA-nodes

Baseline for performance improvement is our FMM implementation without any adjustment
to NUMA-architectures, even without numactl

NUMA-aware data placement leads to an improvement in performance of upto 60%

Performance Improvement

06 :__ SPRALL NUMA-node 0 1 2 3 Work stealing only pays off between threads running on the same NUMA-node
04H— gls%\LLLL Peaks in performance improvement are due to SMT
0.2H__ numactl Performance improvement through NUMA-awareness increases with increasing number
0°01 9 21 é 'II6 3'2 of NUMA-nodes
#Threads
Roadmap
&) JULICH
Initial Additional Improved Added Generalized Generalized J Forschungszentrum
tasking work stealing locking NUMA- vectorization SIMT-layer
framework of tasks via MCS-locks awareness layer for GPUs
[o o [o o)
October April October February August February

2016 2017 2017 2018 2018 2019

TECHNISCHE UNIVERSITAT
CHEMNITZ

