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Starting point: Quantum physics &
information applications

𝑯 𝒙 = 𝝀 𝒙

Need sparse eigenvalue solvers of broad applicability! 

“Few” (1,…,100s) of 
eigenpairs

“Bulk” (100s,…,1000s) 
eigenpairs

Good approximation  to full spectrum (e.g. Density of States) 

Large,  
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Dissipative 
Quantum Systems

𝐴𝑥 = 𝜆𝐵𝑥
𝐴 𝜆 𝑥 = 0

Interoperable 
Libraries

𝐴+ ≠ 𝐴

ESSEX-II (2016-2018)

Conservative 
Quantum Systems

𝐴𝑥 = 𝜆𝑥

Code Blueprints

𝐴+ = 𝐴

ESSEX-I (2013-2015)
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PHIST
Pipelined Hybrid Parallel Iterative 

Solver Toolkit

GHOST
General, Hybrid, and 

Optimized Sparse Toolkit
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User Applications

MPI+X     X ∈ {CUDA,OpenMP,pthreads}

Hardware: CPU / GPGPU / Xeon Phi

3rd-party libraries: 
Trilinos,…R
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Usable software

CRAFT: Efficient Checkpoint/
Restart & Automatic FT

• C++ abstraction for easy C/R and Automatic
Fault Tolerance (AFT)

• Basic data types provided; user-extensible with 
custom data types

• AFT based on MPI-ULFM
• Shrinking & non-shrinking recovery
• C/R based on MPI-I/O or the SCR library
• Multiple checkpoints
• Nested checkpoints

RACE: Recursive Adaptive 
Coloring Engine

• Block multicoloring
for resolving data depen-
dencies in sparse algo-
rithms

• Automatic load 
balancing

• Cache-friendlier parti-
tioning as compared to
standard multicoloring

PHIST: Sparse Solver 
Framework

• General-purpose block Jacobi-Davidson Eigensolver, 
Krylov methods, preconditioning interface

• C, C++, Fortran 2003, and Python bindings
• Backends: GHOST, Tpetra, PETSc, Eigen, Fortran
• Can use Trilinos solvers Belos and Anasazi, 

independent of backend

ScaMaC: Scalable Matrix 
Collection

• Easy generation of large sparse matrices for 
quantum problems, library & stand-alone

• Fully parallel & scalable generation

: General, Hybrid, 
Optimized Sparse Toolkit

• Sparse building blocks (spM[M]VM, 
simple algorithms, blueprints) and tasking library

• MPI+X, X ∈ {CUDA,OpenMP,pthreads}
• Fully heterogeneous parallelism (CPU, GPGPU, Phi)

ppOpen-SOL: Robust ILU 
Preconditioner For Exascale

• Block ILU preconditioner with diagonal 
shifting

• Hierarchical parallelization of multicoloring

Inner Eigenvalues
Chebyshev Filter Diagonalization

BEAST: Framework for interior eigenproblems
Solver alternatives:
• BEAST-M: initial outer 

iterations  perform.
• BEAST-C: later outer 

iterations  accuracy
• Adaptive accuracy 

support (FP32  FP64)

Nonlinear EV Problems

Resource
arbitration

Heterogeneous compute node Mapping of MPI processes

Data-parallel and hardware-aware heterogeneous work distribution

 A Lanczos
benchmark showing
the CR and AFT 
overheads on 128 IVB 
nodes. The average
communication
recovery time is 2.6 
sec.
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Wave packet impinging on 
quantum dot array

High-degree polynomials required for good filter functions

blogs.fau.de/essex

Filter diagonalization of a topo-
logical insulator matrix of size up to

4 × 109, computing 100 inner 
eigenvalues (weak scaling)

Oakforest-PACS (KNL) Piz Daint (P100)

𝑇𝑛+1 𝑥 = 2𝑥𝑇𝑛 𝑥 − 𝑇𝑛−1(𝑥)

 Polynomial filter performance 
vs. polynomial degree on KNL, 
P100, and V100 for a topological 
insulator matrix





Basic 
structure of

code with
C/R and AFT 
facilities via 

CRAFT

𝐴 𝜆 𝑥 = 0

Vertical integration

Algorithms

Solver templates
FT strategies

algo core

Kernel interface

Computational core
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PETSc

Tpetra

Eigen

F2003
fallback

Preconditioners

setup/apply


