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1. Research Context

• Loops are the main source of parallelism in
computationally-intensive scientific applications

• Scientific applications performance on high perfor-
mance computing (HPC) systems may be degraded
due to load imbalance

Challenges
• Load imbalance may be caused by irregular compu-

tational load per loop iteration, or irregular and un-
predictable computing system characteristics

- Dynamic loop scheduling techniques are used
to address load imbalance in computationally-
intensive applications

• Perturbations and failures are expected to manifest
increasingly in future HPC systems, with high count
of processing elements (nodes, sockets, cores, ...)

Goal
Improve computationally-intensive scientific applications
performance on HPC systems under unpredictable appli-
cation and system characteristics via robust scheduling

2. Dynamic Loop Scheduling Techniques

Loop scheduling characteristics [1]
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3. Research Questions
Q1. How close are the implementations of DLS techniques in simulation and native codes to their original proposed

specifications decades ago?

Q2. How realistic are the simulations of executions of scientific applications using DLS on HPC platforms?

Q3. Given an application, a high-performance computing (HPC) system, and both their characteristics and interplay,
which DLS technique will achieve improved performance under unpredictable perturbations?

Q4. How to tolerate fail-stop failures of PEs during execution and maintain a balanced load enhanced application
performance?

Q5. How to ensure applications results integrity under silent data corruption (SDC) faults?

4. How Realistic are Simulations of Performance?
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5. SimAS: Simulator Assisted Scheduling Under Perturbations

Answer Q3 [4]
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6. rDLB: Robust Dynamic Load Balancing
Answer Q4 [5]
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rDLB: Robust Dynamic Load Balancing of Scientific Applications
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7. Next Steps

• Address SDC by replicating computations and solve
scheduling challenges of replication (answer Q5)

• Analyze load imbalance in scientific applications at
multiple levels of software parallelism

• Examining the performance of DLS at large scale via
simulations

• Exploit multilevel scheduling to achieve fault tolerant
application execution
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