
DesignofRobustSchedulingMethodologies in
HighPerformanceComputing

Doctoral Candidate: Ali Mohammed
Advisor: Prof. Dr. Florina M. Ciorba

Department of Mathematics and Computer Science
University of Basel, Switzerland

{firstname.lastname}@unibas.ch

1. Research Context

• Loops are the main source of parallelism in
computationally-intensive scientific applications

• Scientific applications performance on high perfor-
mance computing (HPC) systems may be degraded
due to load imbalance

Challenges
• Load imbalance may be caused by irregular compu-

tational load per loop iteration, or irregular and un-
predictable computing system characteristics

- Dynamic loop scheduling techniques are used
to address load imbalance in computationally-
intensive applications

• Perturbations and failures are expected to manifest
increasingly in future HPC systems, with high count
of processing elements (nodes, sockets, cores, ...)

Goal
Improve computationally-intensive scientific applications
performance on HPC systems under unpredictable appli-
cation and system characteristics via robust scheduling

2. Dynamic Loop Scheduling Techniques

Loop scheduling characteristics [1]

Scheduling technique
Category Chunk

calculation
Chunk
size

Use of
batches

Dynamic

S
ta

tic

N
on

ad
ap

tiv
e

A
da

pt
iv

e

D
et

er
m

in
is

tic

P
ro

ba
bi

lis
tic

Fi
xe

d

Va
ri

ab
le

Ye
s

N
o

Static block cyclic (STATIC)
Self-scheduling (SS)
Fixed size chunking (FSC)
Guided self-scheduling (GSS)
Factoring (FAC)
Weighted factoring (WF)
Adaptive weighted factoring (AWF-B)
Adaptive weighted factoring (AWF-C)
Adaptive weighted factoring (AWF-D)
Adaptive weighted factoring (AWF-E)
Adaptive factoring (AF)

My step
My step

Global loop index

Global scheduling step

fetch_and_add(1)

Chunk start

Calculate 
chunk

Do chunkfetch_and_add(Chunk size)

Chunk start

Calculate chunk

Do chunk

Thread i

Chunk start

Calculate chunk size

Execute chunk

My step

Application

Request 
work

RequestRequestRequest

Do chunk

Serve 
request

Chunk 
size

Application

Do chunkExecute 
chunk

Master thread

Worker thread i

Assign 
work

Request queue

Centralized	control	approach Decentralized	control	approach

DLS implementation approaches

3. Research Questions
Q1. How close are the implementations of DLS techniques in simulation and native codes to their original proposed

specifications decades ago?

Q2. How realistic are the simulations of executions of scientific applications using DLS on HPC platforms?

Q3. Given an application, a high-performance computing (HPC) system, and both their characteristics and interplay,
which DLS technique will achieve improved performance under unpredictable perturbations?

Q4. How to tolerate fail-stop failures of PEs during execution and maintain a balanced load enhanced application
performance?

Q5. How to ensure applications results integrity under silent data corruption (SDC) faults?

4. How Realistic are Simulations of Performance?
Theory

Experimentation

Simulation

Data
Native	experiment	1

Simulative	experiment	1

Simulative	experiment	2

2

3
1

Native	experiment

Reproduction and verification approach

Answer Q1 [2]

Original	native	execution	(FAC)

Reproduced	simulative	performance	 (centralized)

Reproduced	simulative	performance	 (decentralized)

3,
35
9

3,
35
6

3,
35
2

3,
34
0

3,
31
9

3,
34
2

3,
30
3

3,
32
6

3,
23
6

3,
27
9

3,
37
1

3,
47
5

3,
59
8

3,
71
3

3,
85
8

4,
08
7

3,
19
4

3,
51
9

3,
72
9

3,
85
5

3,
94
0

3,
98
8

3,
99
1

4,
02
5

0
1,000
2,000
3,000
4,000
5,000

4 8 16 24 32 40 48 56

Pa
ra
lle
l	c
os
t	(
s)

Number	of	processors

Verification of DLS implementation by reproduction

Answer Q2 [3]

-6

-4

-2

0

2

4

6

8

10

STATIC SS FSC GSS FACPe
rc

en
t e

rro
r (

%
)

Loop scheduling

Percent error between native and simulative performance results

SG-MSG-miniHPC SG-MSG-Taurus SG-SD-miniHPC SG-SD-Taurus

Verification of simulative versus native performance

5. SimAS: Simulator Assisted Scheduling Under Perturbations

Answer Q3 [4]

Scheduler Chunk of tasks 
execution

State 
estimator

System
Monitor

Chunk size

Perturbations measurements

Predicted 
performance

Last scheduled
iteration index

HPC system representation

Loop representation
Loop scheduling portfolio

Scheduling 
simulator

SimAS: Simulator assisted scheduling for DLS technique
selection under perturbations

n
p

p
e
a
-c

m
p
e
a
-c

s
p
e
a
-e

m
p
e
a
-e

s
b
w

-c
m

b
w

-c
s

b
w

-e
m

b
w

-e
s

la
t-

cm
la

t-
cs

la
t-

e
m

la
t-

e
s

a
ll-

cm
a
ll-

cs
a
ll-

e
m

a
ll-

e
s0

50

100

150

200

250

300

350

P
a
ra

lle
l 
lo

o
p
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)

PE 
availability Bandwidth Latency Combined

Parallel loop execution time [PSIA]

STATIC

SS

FSC

GSS

FAC

WF

AWF-B

AWF-C

AWF-D

AWF-E

AF

SimAS

Performance under perturbations

6. rDLB: Robust Dynamic Load Balancing
Answer Q4 [5]

P1
P2
P3

P1
P2
P3

Perturbation 
begins

All tasks 
completed

All tasks 
scheduled

All tasks 
completed

T7
T0

T1
T2

T3 T5

T4 T6

T8

Aborted
T0

T2

T3

T4

T5

T6
T7

T8
T1

T7

P1
P2
P3

T0
T1

T2

T3
T5

T4

T6

T7
T8

Pe
rt

ur
ba

tio
n-

fr
ee

(b
as

el
in

e)

Perturbation 
begins

(a)

(b)

(c)

All tasks 
scheduled

1 
pe

rt
ur

be
d 

PE
w

ith
ou

t r
D

LB
1 

pe
rt

ur
be

d 
PE

w
ith

 rD
LB P1

P2
P3

Failure

T0
T1

T2

T3
T7T5

T8

T4

T6
T4

All tasks 
completedAll tasks 

scheduled

T4 scheduled 
but unfinished

P1
P2
P3

T0
T1

T2

T3
T5

T4

T6
T7

T8 wait T4 …
wait T4 …

Failure

T8
P1
P2
P3

T0
T1

T2

T3
T5

T4

T6

T7

(b)

(a)

(c)

All tasks 
completed

All tasks 
scheduled

Fa
ilu

re
-f

re
e 

(b
as

el
in

e)
1 

PE
 fa

ilu
re

 
w

ith
ou

t r
D

LB
1 

PE
 fa

ilu
re

 
w

ith
 rD

LB

rDLB: Robust Dynamic Load Balancing of Scientific Applications

S
T
A

T
IC S
S

FS
C

m
FS

C

G
S
S

T
S
S

FA
C

W
F

A
W

F-
B

A
W

F-
C

A
W

F-
D

A
W

F-
E

A
F

Self-scheduling technique

21

22

23

24

25

26

P
a
ra

lle
l 
e
x
e
cu

ti
o
n
 t

im
e
 (

s)

Parallel execution time - PSIA
baseline

PE-pert

PE-pert, rDLB

latency-pert

latency-pert, rDLB

combined-pert

combined-pert, rDLB

Performance under perturbations

7. Next Steps

• Address SDC by replicating computations and solve
scheduling challenges of replication (answer Q5)

• Analyze load imbalance in scientific applications at
multiple levels of software parallelism

• Examining the performance of DLS at large scale via
simulations

• Exploit multilevel scheduling to achieve fault tolerant
application execution

Acknowledgment
This work is supported by the Swiss Platform for Advanced
Scientific Computing (PASC) project SPH-EXA: Optimiz-
ing Smooth Particle Hydrodynamics for Exascale Comput-
ing

References
[1] I. Banicescu and R. L. Cariño, “Addressing the stochastic nature of scientific

computations via dynamic loop scheduling,” Electronic Transactions on Numer-
ical Analysis, vol. 21, 2005.

[2] A. Mohammed, A. Eleliemy, and F. M. Ciorba, “Performance Reproduction and
Prediction of Selected Dynamic Loop Scheduling Experiments,” in Proceed-
ings of the 2018 International Conference on High Performance Computing
and Simulation, 2018.

[3] A. Mohammed, A. Eleliemy, F. M. Ciorba, F. Kasielke, and I. Banicescu, “Exper-
imental Verification and Analysis of Dynamic Loop Scheduling in Scientific Ap-
plications,” in 17th International Symposium on Parallel and Distributed Com-
puting, 2018.

[4] A. Mohammed and F. M. Ciorba, “SiL: An Approach for Adjusting Applications
to Heterogeneous Systems Under Perturbations,” in Proceedings of the 24th In-
ternational European Conference on Parallel and Distributed Computing Work-
shops, 2018.

[5] A. Mohammed, A. Cavelan, and F. M. Ciorba, “rDLB: A Novel Approach for
Robust Dynamic Load Balancing of Scientific Applications with Independent
Tasks,” in Proceedings of the 2019 International Conference on High Perfor-
mance Computing and Simulation, 2019.


