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1. What is it about?
• Batch level scheduling (BLS) competitively schedules jobs on shared HPC systems.

• Application level scheduling (ALS) and thread level scheduling (TLS) cooperatively
schedule computational workloads on a given set of compute resources.

Research Question
Given the competitive aspect in the BLS and the cooperative aspect in the ALS and TLS, how
we can enable feedback and live information between these levels of scheduling to enhance
the parallel execution of scientific applications on HPC systems?

2. Objectives by Priority

1. Minimize application execution times.

2. Maximize resource utilization.

3. Maximize system throughput.

3. State of the Art
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assigned to a certain job do not change at
the runtime

4. How?

Changing the application scheduling
techniques on a certain resource to
co-schedule more applications on that
resource
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resources	to	
co-schedule	new	jobs

4. Envisioned Strategy

• Eliminate resource fragmentation via
dynamic load balancing.

• Exploit unavoidable resource fragmenta-
tion via resource consolidation and co-
scheduling.

• The Multilevel scheduling (MLS) ap-
proach is the intersection between the
following research areas
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▪ Eliminates resource fragmentation
      via dynamic load balancing

▪ Exploits unavoidable resource fragmentation 
     via resource consolidation and co-scheduling

▪ These two strategies intersect with the following 
research areas
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MLS approach

6. Accomplishments
Accomplishment 1: 
A	two-level	simulator	for	batch and	
application level	scheduling [1] 
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Accomplishment 3: 
A distributed chunk-calculation approach 
for dynamic [2,4] loop scheduling at ALS 
on heterogeneous  distributed-memory 
systems

Accomplishment 2: 
Methodology	for	bridging	native	and	
simulated	executions	of	parallel	
applications	on	HPC	systems	[3]

Accomplishment 4: 
A Hierarchical distributed chunk-calculation 
approach for dynamic loop scheduling on 
large scale distributed memory systems  [5]
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• Proposal and implementation of a hierarchical version 
of DLS techniques for distributed-memory systems 
using the MPI+MPI approach.

• Evaluation of using the MPI+MPI approach in 
developing hierarchical  DLS techniques

• A method for obtaining high confidence in the 
results obtained natively and via simulation

• Evaluates the usefulness of using FLOP count vs. 
time-based measurements to represent the 
application characteristics in simulation

• A generic simulation approach that bridges 
two existing simulators from batch and 
application level scheduling

• A study of exploring the relationship between 
BLS and ALS
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1. Expression of the application

2. Verification of the computing
system 
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7. Next Steps

• Enable sending live information from DLS
to the resource and job manager.

• Evaluate BLS+ALS via simulaive and na-
tive experiments.

• Extend the approach to connect TLS with
BLS+ALS.
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