
Multilevel scheduling of computations
in large-scale parallel computing systems

Ahmed Eleliemy and Florina. M. Ciorba (Ph.D. Advisor)
Department of Mathematics and Computer Science, University of Basel, Switzerland

1. What is it about?
• Batch level scheduling (BLS) competitively schedules jobs on shared HPC systems.

• Application level scheduling (ALS) and thread level scheduling (TLS) cooperatively
schedule computational workloads on a given set of compute resources.

Research Question
Given the competitive aspect in the BLS and the cooperative aspect in the ALS and TLS, how
we can enable feedback and live information between these levels of scheduling to enhance
the parallel execution of scientific applications on HPC systems?

2. Objectives by Priority

1. Minimize application execution times.

2. Maximize resource utilization.

3. Maximize system throughput.

3. State of the Art

Job 1 Load imbalance at the thread level
Load imbalance at the process level

Unexploited hardware parallelism

Job 2
Job 3
Job 4

Jo
b

2
st

ar
t

Jo
b

1
st

ar
t

t5

Jo
b

2
en

d
Jo

b
3

st
ar

t

Jo
b

4
en

d

Free
resource

P1
P2

C
or

es
 1

-8
C

or
es

 1
-8

P3
P4

P5

t0
Arrival

Timeline

t2 t3 t4

t1

t1

Jo
b

1
en

d

Jo
b

4
st

ar
t

Jo
b

3
en

d

t2

C
or

es
 1

-8
C

or
es

 1
-8

C
or

es
 1

-8

Processor
Space

Execution
Time

t0

Batch
begin

The total number of computing resources
assigned to a certain job do not change at
the runtime

4. How?

Changing the application scheduling
techniques on a certain resource to
co-schedule more applications on that
resource

Resource	and	job	management	system	

ALS	runtime	library

Jobs	specifications	 Resource	specifications	

Assign
resources
to	certain	
job	

ALS

BLS

Resource	
utilization
feedback

Revised	ALS	technique
that	consolidates	
resources	to	
co-schedule	new	jobs

4. Envisioned Strategy

• Eliminate resource fragmentation via
dynamic load balancing.

• Exploit unavoidable resource fragmenta-
tion via resource consolidation and co-
scheduling.

• The Multilevel scheduling (MLS) ap-
proach is the intersection between the
following research areas

Dynamic resource
allocation and
mangement

Parallel
programming

models

Co-scheduling

Dynamic
 load balancing

▪ Eliminates resource fragmentation
 via dynamic load balancing

▪ Exploits unavoidable resource fragmentation
 via resource consolidation and co-scheduling

▪ These two strategies intersect with the following
research areas

My Ph.D.
MLS approach

6. Accomplishments
Accomplishment 1:
A	two-level	simulator	for	batch and	
application level	scheduling [1]

SimGrid-SD simulation process SimGrid-SD simulation process

Job
completion

GridSim-Alea simulation process

Suspend simulation

Job execution
report

Execution
report

Starting
parameters

Execution
report

Job
submission

Legend

Job loader entity

GridSim simulation engine

Scheduler entity

Simulation
suspend/resume

entity

Job
submission

Job
submission

BLS
communication

manager

GridSim entity
registration

Job execution update

Job execution
report

GridSim entity
registration

GridSim entity
registration

ALS
communication

manager

Job simulation
using given ALS
on allocated
resources

Internal GridSim events

Internal synchronization events of the connection layer
Connection layer entities

External messages of the connection layer

BLS simulator instance

ALS simulator instance 1 ALS simulator instance N

. . .

Job execution
update

Starting
parameters

Job simulation
using given ALS
on allocated
resources

ALS
communication

manager

Simulation clock within a simulation instance

Accomplishment 3:
A distributed chunk-calculation approach
for dynamic [2,4] loop scheduling at ALS
on heterogeneous distributed-memory
systems

Accomplishment 2:
Methodology	for	bridging	native	and	
simulated	executions	of	parallel	
applications	on	HPC	systems	[3]

Accomplishment 4:
A Hierarchical distributed chunk-calculation
approach for dynamic loop scheduling on
large scale distributed memory systems [5]

p0 p1p0 pp-1
...

Last scheduling step i

(1)Get a copy of i
and increment the original i by 1

(3) Get a copy of lpstart
and increment the original lpstart

by Ki

(3) Get a copy of lpstart
and increment the original lpstart

by Ki

Last start loop index lpstart

(1)Get a copy of i
and increment the original i by 1

(2) Calculate
Ki

(2) Calculate
Ki

• Proposal and implementation of a hierarchical version
of DLS techniques for distributed-memory systems
using the MPI+MPI approach.

• Evaluation of using the MPI+MPI approach in
developing hierarchical DLS techniques

• A method for obtaining high confidence in the
results obtained natively and via simulation

• Evaluates the usefulness of using FLOP count vs.
time-based measurements to represent the
application characteristics in simulation

• A generic simulation approach that bridges
two existing simulators from batch and
application level scheduling

• A study of exploring the relationship between
BLS and ALS

Native experimentation

Transformation of
information from the

time-independent
trace into SimDag
application tasks

Time-
independent

trace

Comparison and refinement of
the system representation

Native
performance

measurements

Native
computing system

Native
application code

Simulated
computing system

Native
application code

Simulated
performance

measurements

Native execution
Simulation with
SimGrid-SMPI

Legend
Simulated experimentation

Simulated
computing system

Simulated
application

Simulated
performance

measurements

Simulation with
SimGrid-SimDag

1. Expression of the application

2. Verification of the computing
system

Bridging step

7. Next Steps

• Enable sending live information from DLS
to the resource and job manager.

• Evaluate BLS+ALS via simulaive and na-
tive experiments.

• Extend the approach to connect TLS with
BLS+ALS.

8. Selected Ph.D. Publications
[1] Eleliemy, A., Mohammed, A., and Ciorba, F. M. "Exploring the Relation Between Two Levels of Scheduling Using a Novel Simulation

Approach", The 16th International Symposium on Parallel and Distributed Computing (ISPDC), 2017.

[2] Eleliemy, A., Mohammed, A., and Ciorba, F. M. "Efficient Generation of Parallel Spin-images Using Dynamic Loop Scheduling", The 8th
International Workshop on Multicore and Multithreaded Architectures and Algorithms (M2A2) of the 19th IEEE International Conference
for High Performance Computing and Communications (HPCC), 2017.

[3] Mohammed, A., Eleliemy, A., Ciorba, F. M., Kasielke, F., and Banicescu, I. "Experimental Verification and Analysis of Dynamic Loop
Scheduling in Scientific Applications", The 17th International Symposium on Parallel and Distributed Computing (ISPDC), 2018.

[4] Eleliemy, A. and Ciorba, F. M. "Dynamic Loop Scheduling Using MPI Passive-Target Remote Memory Access", The 27th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing (PDP), 2019.

[5] Eleliemy, A. and Ciorba, F. M. "Hierarchical Dynamic Loop Scheduling on Distributed-Memory Systems Using an MPI+MPI Approach",
The 20th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC), 2019.

