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What is being overlapped? 

Overlapped Overlapped

Compute-Bound IO-Bound

Legends:

Max Speedup = (Kernel time + IO time) /
max(Kernel time, IO time) 2
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Proposed Solution: Multilayer Buffer System (MLBS)

MLBS Helper Engine

function adjoint():

for (i=0 -> N)

compute()

MLBS.write() 

for (i=0 -> N)

MLBS.read()

compute()

Application Space

FIFO FIFO

LIFO LIFO

Fast parallel copy
Pointer swap

Limited Burst Buffer LustreLimited RAM



4

Without MLBS, 
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PhD Road Map
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MLBStore use case:

MLBStore<float> obj(N)
for id=0 -> timesteps

for i=0 -> N
obj[i] = f(x)

obj.write(id) 

Extend: 

MLBS framework 
to include storage objects 

MLBStore to asynchronously 
overlap I/O and compute 

MLBStore to support 
domain decomposition and 
parallel I/O 

MLBS to support any 
out-of-core application


