
Smoothing Data Movement Between 
Memory and Storage for Reverse Time Migration

Tariq Alturkestani

PhD advisor: David Keyes

King Abdullah University of Science and Technology 
June 17, 2019



Compute IO

T = 0 T = 0

What is being overlapped? 

Overlapped Overlapped

Compute-Bound IO-Bound

Legends:

Max Speedup = (Kernel time + IO time) /
max(Kernel time, IO time) 2



3

Proposed Solution: Multilayer Buffer System (MLBS)

MLBS Helper Engine

function adjoint():

for (i=0 -> N)

compute()

MLBS.write() 

for (i=0 -> N)

MLBS.read()

compute()

Application Space

FIFO FIFO

LIFO LIFO

Fast parallel copy
Pointer swap

Limited Burst Buffer LustreLimited RAM



4

Without MLBS, 
the RTM app 
spends %82 

of its wall time 
on I/O

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800

Lustre BurstBuffer Lustre+MBS BurstBuffer+MBS

Ti
m

e 
(s

)

Kernel Write Read Misc

2.30X 
Speedup

1.35X 
Speedup

3.95X 
Speedup

Lustre+MLBS
I/O Traces 

Forward 

Backward

BurstBuffer+MLBS

.



5

PhD Road Map

Communicator

Memory Manager

File System Manager

Caching Engine

MLBStore Object 

Helper

Application

Node 𝟏Local Storage 
SSD, NVMe

POSIX MPI-IO

Parallel
File 

Systems

Burst Buffer (SSDs)

Lustre (HDDs)

Communicator

Memory Manager

File System Manager

Caching Engine

MLBStore Object 

Helper

Application

Node 𝒏 Local Storage 
SSD, NVMe

POSIX MPI-IO

MLBStore use case:

MLBStore<float> obj(N)
for id=0 -> timesteps

for i=0 -> N
obj[i] = f(x)

obj.write(id) 

Extend: 

MLBS framework 
to include storage objects 

MLBStore to asynchronously 
overlap I/O and compute 

MLBStore to support 
domain decomposition and 
parallel I/O 

MLBS to support any 
out-of-core application


