Development of training environment for deep learning with medical images
on supercomputer system based on asynchronous parallel Bayesian optimization
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(ERT)

» Deep learning has been exploited in the field of medical image analysis. * Job level parallel script language based on Perl
ex.) automated lesion detection, classification of abnormalities, * Easy to manage asynchronously running jobs
segmentation, image enhancement, image generation
* Most of medical image data is volumetric.

Example of Xcrypt script:
use base qw (sandbox limit core);
&limit::initialize(4); +———
my $PARAM_NUM = 10
my $HISTORY_FILE = "$ENV{‘PWD'}/parallel7b04701.out";
“%template = (
‘RANGEO' => [1..32],
|d = parallel bo4_01",
'JS_ph node =>"1",
JS queue => queue
'JS_group' => grou
'JS_limit_time' => 24:00:00',
'exe1@' => sub {" pylhon trammg unet3d.p
‘arg1_0@' => sub { " SENV{PWD}/$self- >{|d} )
‘before’ => sub {
my $param_file = "SENV{'PWD'}/$self- LSM}farams Axt";

Set the number of workers (M > 1)
Requirement for training deep learning with medical images:
* Large amounts of computational power including GPU cluster
* Careful tuning of numerous hyper-parameters

Set information to submit the job

Objective of this study
To build an environment for training deep learning with medical images

Procedure invoked before

on the supercomputer system based on asynchronous parallel Bayesian my Sret = get_bo_params SPARAM_NUM SHISTORY. FILE $param_file';| submitting the job
the sur L (get new hyper-parameters)
optimization “after => sub

Procedure invoked after the job is
completed
(save the combination of the hyper-parameters

{
my S$results = "cat SENV{PWD'}/$self->{id}/results.txt’;
open(OUT, ">> $BO_HISTORY_FILE");
print OUT $results .

Our training environment

| 1. Reedbush-H supercomputer system |

* 120 compute nodes

- Intel Xeon E5-2695v4 x 2

— 256GB RAM

— NVIDIA Tesla P100 (16GB) x 2
* Parallel file system (Lustre, 5.04PB)
* 100 Gbps InfiniBand
* Shared login node itemel B
* Dedicated login node \

— to ensure security using the N N

anonymized medical image data
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Fig. 1 Configuration of Reedbush-H supercomputer system.

UTH: The University of Tokyo Hospital

2. Training framework

* Implemented into the dedicated
login node
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* Training jobs are iterlatively

Fig. 2 Configuration of our training framework.
executed at the compute nodes

| 3. Bayesian optimization (BO) [1] |

* Sequential algorithm
* Maximization of the black-box function

- f(x): drawn from Gaussian Process (x: hyper-parameters)
evaluation

parameters criteria
R

Fig. 3 Relationship between input and output of
hyper-parameter search by Bayesian optimization.

* The sampling point was chosen by balancing exploitation and exploration
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Fig. 4 Relationship between exploitation and exploration.

Asynchronous parallel BO (asyBO)[3]

) close(OUT);

‘after_aborted" => sub {
my $params ="cat SENV{' PWD}/$seIf >{id}/params.txt’;
open(OUT, ">> $BO_| HISTORY FILE");
print OUT $params . " 0.000000%n";

and the evaluation value to the history file)

Procedure invoked after the job is aborted
(save the combination of the hyper-parameters
and the evaluation value (=0.000000) to the
history file)

) close(OUT);

)3
prepare_submit_sync (%template);

Automated detection of lung nodule in chest CT using 3D U-Net
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lung area extraction of 3D combine detection
extraction[4] cube patches outputs results

Fig. 6 Flowchart of automated detection of lung nodule in chest CT using 3D U-Net.

CT images

Conditions
* Dataset: 948 sets of chest CT images

Table 1 Search range of the hyper-parameters.

_ training: 84_3 sgts, validation: 105 sets Parameter Search range
* Evaluation criterion size of input cube patch () 320r64
. depth of U-Net 2/3/4
— partial Aupyalue of FRO;}curve ([0,1]) number of fiters 21 e Trel ayer a2 )
» upper limit: 5 false positives per case filter size of convolution layer 3ors
* 11 types of hyper-parameters (Table 1) .usia residualunit :‘;:’(F::;z)
* Number of workers (M): 1*,2,4, 8,16 caming rate (Adamy To%108
H . H S (Adam) 0.9-0.99
* Experlmgr_}t. 3 times X number of data ion for each patch [ 0-4
— 32 training jobs per experiment maximum size of randomn shiftfor data N2
— initialization: randomly picking 3 sets of ~—=="" -

hyper-parameters
* works as sequential BO (seqBO)

3 0/90/180/270 degree on the axial, coronal, and sagittal plane

Results
* Performance after tuning:
— seqBO (M =1) > asyBO (M < 8) >asyBO (M = 16) ~ random search
— asyBO can realize of training with hyper-parameter tuning in a short time

065 065
9 | o
2 060 A S5
s <
g s
€ 055 £ 055
5 H
S 050 ' 050
E ~random search E seqBO (M=1)
E o045 5eqBO (M=1) E 045 —asyBO (M=2)
3 —asyBO (M=2) E —asyBO (M=4)
= 040 —asyBO (M=4) S ox0 asyBO (M=8)
—asyBO (M=) —asyBO (M=16)
—asyBO (M=16)
035 035
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32

Number of training jobs
Fig. 7 Change of partial AUC of validation data
where each value is maximum value in past
training jobs.

Number of training jobs / worker (M)

Fig. 8 Change of AUC of validation data where each
value is maximum value in past trials. The
horizontal axis indicates the number of
training jobs divided by the number of workers.

Conclusion

The constructed environment enabled to efficiently train deep learning
with hyper-parameter tuning on the Reedbush-H supercomputer system.
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* The parameters for new job were @ s 0 e
chosen using the result of the }m o
finished jobs. b fn‘ (29'—1—'—@—'—|—l— -
— expect to improve the efficiency ’ll‘ (3 A} ;:s_‘. L A ! .
for training of deep learning on time —

Fig. 5 Example of job sequence for asynchronous parallel BO
using M = 3 workers. The parameters for ninth job
were chosen using the result of the first six jobs.

(The seventh and eighth jobs are ignored because they
are not completed.)

the GPU cluster
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