
Table.4 Performance efficiency of GEMM and sqrt.

①

②

Performance Tuning of Deep Learning Framework Chainer
on the K computer

Akiyoshi KURODA1, Kiyoshi KUMAHATA1, Syuichi CHIBA2, Katsutoshi TAKASHINA2 and Kazuo MINAMI1
1 R-CCS, Operations and Computer Technologies Division, Application Tuning Development Unit.
2 FUJITSU LIMITED.

1. Introduction
Recently GPUs has become a popular platform for executing deep learning (DL) workloads. We revisit the idea of doing DL on CPUs,
especially massively parallel CPU clusters (supercomputers). In anticipation of deployment of the Supercomputer Fugaku with much
more DL capable CPUs, we investigate which optimizations can be already done using the K computer, current leadership
computing facility and predecessor to the Supercomputer Fugaku. We use Chainer as a deep learning framework of choice.

ISC 2019 Messe Frankfurt, June 16-20, 2019

Line# Hits Time Per Hit % Time Line Contents
==
104 7200 4482481.0 622.6 21.2 m += (1 - hp.beta1) * (grad - m)
105 7200 4366618.0 606.5 20.6 v += (1 - hp.beta2) * (grad * grad - v)

7200 7337882.0 1019.2 34.6 param.data -= hp.eta * (self.lr * m / (numpy.sqrt(vhat) + hp.eps) +
113 7200 4864633.0 675.6 23.0 hp.weight_decay_rate * param.data)

5. Result
– Speedups by each tuning step [Fig.3]:

• Using SSL II thread parallel BLAS in numpy.dot: 1.15x
• Using of SWPL by Fortran library for Adam's sqrt: 4.54x
• floating point underflow control: 3.38x
• Total speedup: 16.2x

– Efficiency improvements [Table 4]:
• Using SSL II thread parallel BLAS in numpy.dot: 7.76%→38.81%→47.03% (6.06x)
• Using of SWPL by Fortran library for Adam's sqrt and floating point underflow control:

0.04%→0.92%→17.89% (490x)

6. Parallelization by the ChainerMN
We also tried to install ChainerMN-1.3.0 and
released it to the K computer users.

– Scalability of ChainerMN on the K computer is
[Fig.4].
• Measurement conditions: MNIST sample (unit=1000,

epoch=20 → 1epoch=600iter).
• Although it can be measured even using 600 proc. or

more, we must take care of recurrence and
consistency of results.

• It scales well up to about 200 processes for this
MNIST sample problem.

7. Conclusion
There are some limitations on the use of Chainer on the K computer. It is necessary to
prepare the learning data beforehand and to stage-in the data to an appropriate
storage system. Moreover, since Python is in the shared storage, it takes time to load
the library. However, it was confirmed that we can use the K computer for deep
learning sufficiently as well as GPU.

4. numpy.dot GEMM convolution
– achieves only 7.76% peak performance.
– NumPy was compiled against vectorized (using

SSl II) but single-threaded Fujitsu BLAS
library.

– We modified numpy.dot to call multi-threaded
version.

3. Adam optimizer
– Optimizer consumed 84% of execution time and ran with 0.04% efficiency as measured using Fujitsu

hardware counters.
– The dominant operation is square root of matrix elements called from NumPy for filter update.
– This function in NumPy was implemented with automatic C language code generation, and thus

difficult to tune directly..
– We rewrote all calculations in Adam using vectorized Fortran library and SIMD conversion and software

pipelining (SWPL).
– In filter update calculations many values happened to be close to zero(denormalized number) , raising

underflow exceptions. We recompiled Python with an option forcing to truncate such numbers to
zero.

– We have also applied SWPL and masked SIMD using Fortran Library to implement ReLU activation
function.

Fig.1 Call graph sample of Chainer
on the K computer

Fig.2 Line cost of Adam optimizer.

Table.1 Profiler (cProfile) result on the K computer.

Table.2 numPy.dot calculation.

Table.5 Profiler result after all tuning.

Table.3 Elapsed time of tuning stage.

Fig.4 Elapsed time of the scaling result.

Fig.5 The change of cost distribution by the parallelization effect.

Fig.3 Elapsed time on the all tuning step.

2. Characteristic of Chainer
– Profiling results of Chainer using cProfile+gprof2dot

are [Fig.1][Table.1] .
• Total execution time of 10.311 s breaks down as follow:

– Adam optimizer [adam.py]: 84%①．
– numpy.dot called from linear.py: 11%②．
– Other parts: 5%.

subroutine calculation gemm size(M,N,K) #call elapse [s] efficency %
linear.py:33(forward) y=x.dot(W.T) (100, 1000, 784), (100, 1000, 1000), (100, 10, 1000) x42000 429.3[s] 9.20%
linear.py:96(forward) gx=gy.dot(W) (100, 1000, 10), (100, 1000, 1000) x24000 283.2[s] 6.73%
linear.py:145(forward) gW=gy.T.dot(x) (10, 1000, 100) , (1000, 1000, 100), (1000, 784, 100) x36000 380.6[s] 8.90%

・Original Chainer Ver.4.4.0 profile for MNIST sample (unit=1,000, epoch=20) on the K computer
ncalls tottime percall cumtime percall filename:lineno(function)

72000 8,405.11 0.117 8,421.99 0.117 optimizers/adam.py:91(update_core_cpu)
102000 1,122.61 0.011 1,122.61 0.011 {method 'dot' of 'numpy.ndarray' objects}
28000 46.44 0.002 47.38 0.002 activation/relu.py:29(forward_cpu)

218000 34.60 0.000 1,421.38 0.007 function_node.py:201(apply)
24000 30.97 0.001 32.05 0.001 activation/relu.py:96(forward_cpu)

①
②

16.0

64.0

256.0

1,024.0

4,096.0

16,384.0

1 4 16 64 256 1024

elapsed[s]

#proc.

Scalability of Chainer
on the K computer

ChainerMN
Chainer

name tuning GEMM Adam other total
1,189.1 8,657.4 465.2 10,311.7

underflow Kfast(Kns) 990.2 1,681.9 372.2 3,044.4
GEMM thread 236.5 8,386.9 336.9 8,960.2
Adam FortranLib. 1,052.6 780.7 439.6 2,272.9

194.9 41.3 399.0 635.2

original

all

name tuning GEMM sqrt
7.76% 0.04%

underflow Kfast(Kns) 9.31% 0.19%
GEMM thread 38.81% 0.48%
Adam FortranLib. 8.76% 0.92%

47.03% 17.89%

original

all

1,189.1 990.2 236.5 1,052.6

194.9

8,657.4

1,681.9

8,386.9

780.7 41.3

465.2

372.2

336.9

439.6

399.0
0.0

2,000.0

4,000.0

6,000.0

8,000.0

10,000.0

12,000.0

original underflow GEMM Adam all

elapsed[s]

Performance tuning of Chainer
on the K computer

other
adam
GEMM

・Tuned Chainer Ver.4.4.0 profile for MNIST sample (unit=1,000, epoch=20) on the K computer
ncalls tottime percall cumtime percall filename:lineno(function)
102000 166.80 0.002 166.80 0.002 {method 'dot' of 'numpy.ndarray' objects}
72000 60.73 0.001 104.47 0.001 optimizers/adam.py:53(adam_kro2)

218000 38.49 0.000 440.19 0.002 function_node.py:201(apply)
12000 18.17 0.002 292.06 0.024 variable.py:968(_backward_main)

364000 16.73 0.000 21.16 0.000 numpy/ctypeslib.py:196(from_param)

1,189.1

194.9

20.6

8,657.4

41.3

34.7

15.5

465.2

399.0

14.9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1proc. original 1proc. all 48proc. original

elapse %

Cost distribution of Chainer
on the K computer

other

MPI

Adam

GEMM

