
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Image
Acquisition

Smoothing Thresholding
Erosion and

Dilation

Decision
Tracker
Overlay

Image
Display

With the continuing trends of growing cities and urban areas, fire hazards are

expected to rise as well, causing more and more damage. To this day, fire detection

systems still rely on hardware sensors, these sensors are usually slow since they rely

on smoke making contact with the sensor before the fire is detected [1]. While other

sensors rely on temperature information, which is inefficient, as most of the damage

will have already been done. In addition, such systems are not practical when

implemented in large areas such as forests or highways [2]. Increased urbanization

has also caused a rise in video surveillance and monitoring [3], which have the

potential to be used in early fire detection. The approach suggested in this paper uses

the already existing security camera infrastructure to detect smoke at high frame rate

with a reduction in latency. GPUs (Graphics Processing Units) have recently become

popular in parallel computing platforms, with CUDA (Compute Unified Device

Architecture), created by NVIDIA, providing a programming framework to enable

the acceleration of compute-intensive applications using NVIDIA GPUs. Multiple

high resolution video streams would generate too much data that CPUs can’t handle,

hence the use of GPUs. The algorithm will rely on color analysis and other image

processing techniques to identify and locate the fire. Another possible use of this

algorithm is in processing of video streams originating from flying swarm of drones,

that can be programmed to monitor large forests, since the performance and FPS

(Frames per Second) should be high enough to allow for real time detection and

tracking.

Introduction

Algorithm

Algorithm (continued)

Decision: The decision is based on the minimum size of the object found in the Threshold

matrix after applying the cv::findcontours() function that stores all objects in the matrix in a

vector. Also if the function outputs more than 50 objects then the filter isn’t accurate and will

need adjustments to boundary arrays or the filter masks. Detected Objects will have their

coordinates stored in a Vector that will later be used to overlay the tracker on the original image

Experimental Setup

Kernel Parameters :

References

[1] Spearpoint M J, Smithies J N. Practical comparison of domestic smoke alarm sensitivity standards. Proc. 11th International

Conference on Fire Detection, AUBE '99, pp. 576- 587, Duisburg, Germany, 1999

[2] Azuma T., Gunki S., Ichikawa A.,Yokota M. Effectiveness of a flame-sensing-type fire detector in a large tunnel. Bedford : ITC.

2005

[3] Koskela H., ‘The gaze without eyes’: video-surveillance and the changing nature of urban space. Department of Geography,

University of Helsinki,Finland. 2000

CUDA code can be found in this Link:

https://github.com/WissamAntoun/Cuda-Kernels/tree/master/Fire%20Detection%20CUDA

Figure 1. Visual representation of the algorithm

Electrical and Computer Engineering Department, American University of Beirut

Wissam Antoun wfa07@aub.edu.lb, Manal Jalloul, PhD mj37@aub.edu.lb

Real-Time Fire Detection Using CUDA

Running in the GPU

Running on the CPU

Copy the image to the GPU

Copy the image back to the CPU

Figure 2. Erosion Figure 3. Dilation

• BLUR Mask Width 5 Pixels

• DILATE Mask Width 9 Pixels

• ERODE Mask Width 3 Pixels

Computer Specs:

• Intel® Core™ i5-6600 Processor (6M Cache,

up to 3.90 GHz)

• 8GB DDR4 2166MHz RAM

• 5600RPM 1TB HDD

• GTX 970 1050 MHz 4GB GDDR5 1664

CUDA Cores

• 16x16 Threads Per Block

• BLUR GRID SIZE 320x180 Blocks

• DILATE GRID SIZE 480x270 Blocks

• ERODE GRID SIZE 275x155 Blocks

• Threshold GRID SIZE 240x135 Blocks

Threshold Boundaries:

• BLUE_MIN = 40;

• GREEN_MIN = 0;

• RED_MIN = 95;

• BLUE_MAX = 256;

• GREEN_MAX = 95;

• RED_MAX = 256;

Results

Figure 4. A frame with the tracking overlay

Figure 5. Shows a Threshold frame after dilate

and erode

Figure 6. NVIDIA Visual Profiler Output Graph

Table 1. FPS Comparison between different parts of the algorithm

Conclusion

CPU GPU SpeedUP

FPS (4K) 6 11 83%

This research presents a efficient fire detection algorithm that uses image processing to

segment fire regions. The algorithm was accelerated by parallelizing using CUDA and

implemented on Nvidia’s GPU. A speedup of 83% was achieved as compared to the serial

implementation. Future Work will explore using CUDA streams to achieve real-time

processing.

• Image Acquisition: To simulate an event where multiple video streams are

processed at the same time, the input stream will be a 4K (3840x2176p

14.4Mbps@29.97fps). Which is equivalent to processing 4 FHD video streams or 9

HD streams at the same time.

• Smoothing: A smooth filter or a low pass filter is the basis for most smoothing

methods. An image is smoothed by decreasing the disparity between pixel values by

averaging nearby pixels.

• CPU: cv::meanBlur() function applies an averaging filter to the image

frame

• GPU: TiledMeanBlur() written using CUDA C, each thread will load

the needed pixels (Output pixels + Halo), and only threads within the

Output tile will be computing the mean using a Mask that was copied

earlier in the initialization phase into the constant memory to guarantee

faster access.

• Thresholding: checks if the pixel lies between a lower and upper bound

• CPU: cv:: inRange() function will output a new array that contains

only 1 channel with 255 where the original pixel passes the check and

0 otherwise.

• GPU: GPU_inrange() written using CUDA C, each thread will check if

the one pixel is in the range of the supplied arrays.

• Erosion and Dilation: Compute a local minimum or maximum (respectively)

over the area of the kernel, so in case of Erosion bright areas of the image will get

thinner thus removing small noise dots (Fig 2) and in the case Dilation bright areas of

the image will get bigger thus overlapping and join objects that are close to each other

as shown in Fig 3.

• CPU: cv::Erode(), the erode function is used twice in a row to provide

better noise removal.

• GPU: TiledGpuErode(), written using CUDA C, each thread will load

one of the needed pixels (Output pixels + Halo), and only threads

within the Output tile will be checking if one of the value under the

Kernel is zero then the central element will replaced by a zero else it

will be replaced by 255.

https://github.com/WissamAntoun/Cuda-Kernels/tree/master/Fire%20Detection%20CUDA
mailto:14.4Mbps@29.97fps

