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Evaluation Setting

 The results show that we can reduce the 
communication overhead by 84.27% at 32 batch 
/node without any accuracy degradation. 

 In best case, one communication overhead can be 
reduced to about 2.3 msec at 32 batch /node.

 Moreover, the total learning time can be reduced 
by 7% when using 4 nodes learning system.

We used Chainer [12] and ChainerMN [13] framework, 

and trained default ResNet-50 model. However our 

proposed method can also be used with other Python 

based DL frame works. Learning rate: exponential shift 

0.1 every 30 epochs. Data augmentation: random crop, 

horizontal flip. Optimization: Momentum SGD 

(momentum = 0.9). Weight decay: 0.0001 [14].

Evaluation Environment: CPU (Intel, Core i7 5930K)、memory (32 GB)、GPU (Nvidia, Tesla P100)、HCA (Mellanox, ConnectX-4 HCA)、IB Switch (Mellanox, Switch 

IB-2)、Infiniband EDR (MCP1600)、FPGA (Xilinx: VCU118)、DMA Controller (Xilinx, XDMA)、Ehternet MAC (Xilinx, CMAC)、100G Ethernet (100GBASE-SR4)

Proposed FPGA Ring-Allreduce System

Parameter-based Computing/Communication Overlap (PCCO)

By utilizing following two techniques to the proposed system, we achieve lower latency than conventional Ring-Allreduce system.

Technique1: Separation of Reduction Path and Broadcast Path.
In conventional system, Reduction and Broadcast in Ring Allreduce are sequentially executed. In Proposed FPGA Ring-Allreduce system, execution of Reduction and 
Broadcast are pipelined by designing each Path separately. Reduction results are send to the Broadcast Path in the master node. 

Technique2: Cut-Through Buffering
In slave nodes, model parameters sent from the previous node is added to the model parameters read from a GPU Device memory. 
In conventional In-Network Computing system, latency occurs because summation is executed after buffering entire received data frame [8]. To reduce latency due to 
buffer time, we utilize cut-through buffering which immediately starts Reduction after the head of received data frame from the previous node arrive [9].

 Deep Learning (DL) becomes 
supercomputing when trying to solve 
advanced challenges such as Climate 
Analytics [1].

 Among various methods for efficient 
distributed DL [2], the top three state-of-
the-art ImageNet/ResNet-50 training were 
achieved by utilizing a distributed data-
parallel DL with Ring Allreduce [3, 4] or 
2D-Torus Allreduce [5, 6].

 However, it is difficult to apply them at large 
scale because latency is accumulated at 
each node due to data moving to GPU or 
CPU for Reduce processes.

 Our solution is to use In-Network 
Computing to handle data reduction while 
it is being transferred in the network, and 
not to move data to the GPU or CPU during 
Allreduce [7, 8, 9].

Introduction
 Since the conventional In-Network Computing hardware can apply to only hierarchical Allreduce [7, 8], 

in this work, we propose a new In-Network Computing hardware that can support Ring Allreduce. Moreover we 
apply an Allreduce specific buffering [9] to process Allreduce with lower latency than conventional buffering.

 In order to minimize communication overhead, we apply layer-based computing/communication overlap [10, 11]  
and optimize it for our proposed In-Network Computing system.

 We also propose a highly productive software stack consisting of
 a high-level abstraction DL framework (Python)
 low-level abstraction device control languages (C, CUDA, RTL)

Proposed System Overview

Conclusion
 It is confirmed that our system can significantly reduce the communication overhead without deteriorating accuracy when applying to following cases:

Large-scale distributed DL with a large communication load.
Distributed DL model with small batch size training.

 Although the current top data is 2-D Torus Allreduce using ASIC in domain specific architecture [5], 
the result shows that the communication overhead is shorter by applying our proposed method, which indicates the possibility of In-Network Computing.

 Our proposed system can be easily extended to 2-D Torus Allreduce which improves node scaling efficiency. 
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84.27%

Distributed DL training systems can overlap Allreduce operations of upper layers with computation of lower layers, reducing dedicated communication overhead [10]. 

This strategy is called layer-based computation/communication overlap [11].

We apply this strategy and extended it to operate on each parameter to take advantage of the performance of the proposed FPGA Ring-Allreduce system.

We call this new strategy parameter-based computation/communication overlap (PCCO).


