
Distributed Deep Learning with FPGA Ring Allreduce
Kenji Tanaka1, Yuki Arikawa1, Kenji Kawai1, Junichi Kato1, Tsuyoshi Ito1, Huy Cu Ngo1, Kazutaka Morita2, Fumiaki Miura2, Takeshi Sakamoto1,

Satoshi Shigematsu1. 1. NTT Device Technology Laboratories, NTT Corporation. 2. NTT Software Innovation Center, NTT Corporation.

Evaluation Setting

 The results show that we can reduce the
communication overhead by 84.27% at 32 batch
/node without any accuracy degradation.

 In best case, one communication overhead can be
reduced to about 2.3 msec at 32 batch /node.

 Moreover, the total learning time can be reduced
by 7% when using 4 nodes learning system.

We used Chainer [12] and ChainerMN [13] framework,

and trained default ResNet-50 model. However our

proposed method can also be used with other Python

based DL frame works. Learning rate: exponential shift

0.1 every 30 epochs. Data augmentation: random crop,

horizontal flip. Optimization: Momentum SGD

(momentum = 0.9). Weight decay: 0.0001 [14].

Evaluation Environment: CPU (Intel, Core i7 5930K)、memory (32 GB)、GPU (Nvidia, Tesla P100)、HCA (Mellanox, ConnectX-4 HCA)、IB Switch (Mellanox, Switch

IB-2)、Infiniband EDR (MCP1600)、FPGA (Xilinx: VCU118)、DMA Controller (Xilinx, XDMA)、Ehternet MAC (Xilinx, CMAC)、100G Ethernet (100GBASE-SR4)

Proposed FPGA Ring-Allreduce System

Parameter-based Computing/Communication Overlap (PCCO)

By utilizing following two techniques to the proposed system, we achieve lower latency than conventional Ring-Allreduce system.

Technique1: Separation of Reduction Path and Broadcast Path.
In conventional system, Reduction and Broadcast in Ring Allreduce are sequentially executed. In Proposed FPGA Ring-Allreduce system, execution of Reduction and
Broadcast are pipelined by designing each Path separately. Reduction results are send to the Broadcast Path in the master node.

Technique2: Cut-Through Buffering
In slave nodes, model parameters sent from the previous node is added to the model parameters read from a GPU Device memory.
In conventional In-Network Computing system, latency occurs because summation is executed after buffering entire received data frame [8]. To reduce latency due to
buffer time, we utilize cut-through buffering which immediately starts Reduction after the head of received data frame from the previous node arrive [9].

 Deep Learning (DL) becomes
supercomputing when trying to solve
advanced challenges such as Climate
Analytics [1].

 Among various methods for efficient
distributed DL [2], the top three state-of-
the-art ImageNet/ResNet-50 training were
achieved by utilizing a distributed data-
parallel DL with Ring Allreduce [3, 4] or
2D-Torus Allreduce [5, 6].

 However, it is difficult to apply them at large
scale because latency is accumulated at
each node due to data moving to GPU or
CPU for Reduce processes.

 Our solution is to use In-Network
Computing to handle data reduction while
it is being transferred in the network, and
not to move data to the GPU or CPU during
Allreduce [7, 8, 9].

Introduction
 Since the conventional In-Network Computing hardware can apply to only hierarchical Allreduce [7, 8],

in this work, we propose a new In-Network Computing hardware that can support Ring Allreduce. Moreover we
apply an Allreduce specific buffering [9] to process Allreduce with lower latency than conventional buffering.

 In order to minimize communication overhead, we apply layer-based computing/communication overlap [10, 11]
and optimize it for our proposed In-Network Computing system.

 We also propose a highly productive software stack consisting of
 a high-level abstraction DL framework (Python)
 low-level abstraction device control languages (C, CUDA, RTL)

Proposed System Overview

Conclusion
 It is confirmed that our system can significantly reduce the communication overhead without deteriorating accuracy when applying to following cases:

Large-scale distributed DL with a large communication load.
Distributed DL model with small batch size training.

 Although the current top data is 2-D Torus Allreduce using ASIC in domain specific architecture [5],
the result shows that the communication overhead is shorter by applying our proposed method, which indicates the possibility of In-Network Computing.

 Our proposed system can be easily extended to 2-D Torus Allreduce which improves node scaling efficiency.
Reference: [1] T. Kurth, et. al., 2018. SC'18. Article No. 51., [2] T. Ben-Num, and T. Hoefler. 2018. arXiv:cs.LG/1802.09941., [3] A. Sergeev, and M. Balso, 2018. arXiv:cs.LG/1802.05799., [4] X. Jia, et. al., 2018. arXiv:cs.LG/1807.11205., [5] C. Ying, et. al., 2018. arXiv:cs.LG/1811.06992., [6]

H. Mikami, et. al., 2018. arXiv:cs.LG/1811.05233., [7] G. Bloch, et. al., 2017. Supercomput. Front. Innov., [8] G. Bloch, et. al. 2015. Patent NO. US20170063613A1., [9] K. Tanaka, et. al., 2018. SC18. Poster No. 140., [10] H. Zhang, et. al., 2017. arXiv:cs.LG/1706.03292., [11] P. Sun, et. al.,

2019. arXiv:cs.DC/1902.06855., [12] S. Tokui, et. al., 2015. Proceedings of Workshop on LearningSys in NIPS., [13] T. Akiba, et. al., 2017. Proceedings of Workshop on ML Systems in NIPS., [14] P. Goyal, et. al., 2017. arXiv:cs.CV/1706.02677., [15] S. Jeaugey. 2017. NCCl.

https://github.com/NVIDIA/nccl

Evaluation Results

C
o

m
m

u
n

ic
a
ti

o
n

 O
v
e
rh

e
a
d

 (
se

c/
e
p

o
ch

)

32 batch/node 64 batch/node 128 batch/node

265.6

159.7

41.8

97.9

79.7

20.8

50.9
42.1

11.3

CPU

GPU Forward Prop. Optimize Forward Prop.

FPGA

DMA

Controller

DMA

Controller

DMA

Controller

Ethernet

MAC

Ethernet

MAC

Ethernet

MAC

Reduction Reduction Reduction

Broadcast Broadcast Broadcast

Write Register Write Register Write Register
Trigger Trigger Trigger

Back Prop.
Lower LayerInterlayerUpper Layer

100G Ethernet

G
P

U
 D

e
v
ic

e

M
e
m

o
ry

+
Send

MAC

Recv

MAC

Send

MAC

Master Node

R
e
d

u
c
ti

o
n

 R
e
su

lt
s

Recv

MAC

F
P

G
A

 D
M

A

C
o

n
tr

o
ll
e
r

100G Ethernet G
P

U
 D

e
v
ic

e

M
e
m

o
ry

+
Send

MAC

Recv

MAC

Send

MAC

Slave Node

Recv

MAC

F
P

G
A

 D
M

A

C
o

n
tr

o
ll
e
r

G
P

U
 D

e
v
ic

e

M
e
m

o
ry

+
Send

MAC

Recv

MAC

Send

MAC

Slave Node

Recv

MAC

F
P

G
A

 D
M

A

C
o

n
tr

o
ll
e
r

Reduction Path

Broadcast Path

Node

CPU

GPU

Python

Device Memory
DMA

Controller

Ethernet

MACReduce

FPGA Control Path

CythonCUDA

GPU Control Path

Data Path

Node

Node
100G Ethernet x2FPGA

DMA: Direct Memory Access
Ethernet MAC: Ethernet Media Access Controller

Communication Overhead

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

V
a
li
d

a
ti

o
n

 A
cc

u
ra

cy

epoch

■Infiniband & NCCL [15] System

■Proposed FPGA Ring-Allreduce with PCCO

0.703

0.702

4node, 32 batch/node

■Infiniband & NCCL [15] System

■Proposed FPGA Ring Allreduce

■Proposed FPGA Ring Allreduce with PCCO

84.27%

Distributed DL training systems can overlap Allreduce operations of upper layers with computation of lower layers, reducing dedicated communication overhead [10].

This strategy is called layer-based computation/communication overlap [11].

We apply this strategy and extended it to operate on each parameter to take advantage of the performance of the proposed FPGA Ring-Allreduce system.

We call this new strategy parameter-based computation/communication overlap (PCCO).

