______________________

|5T|

-- www.kistl.re.kr

Korea Institute of
Science and Technology Information

1. Introduction

Recently, the virtual machine (VM)-based high-performance computing (HPC) service has been provided in the cloud
environment to satisfy portability, flexibility, scalability, and reduction of deployment costs in the HPC field. However,
performance issues and workload management issues due to the limitations of VM are reducing the resource utilization of
HPC users. Therefore, we aim to provide a lightweight container-based cloud environment to HPC users. This container-
based approach consists of two main components: the image management system and the workload management system.
We have designed and implemented the system workflow and architecture considering ease of use and efficiency of
management. The results have been obtained by comparing network performance, MPI performance and a simple machine
learning code — MNIST between bare-metal and container-based (both in Docker and Singularity) environments.

2. Workflow and Architecture
« System Workflow

A Container-based Approach to HPC Cloud

Guohua Li (ghlee@kisti.re.kr), Joon Woo and Taeyoung Hong

eo00 |:>Image Management
ﬂﬂ‘m [ >JOb Management | Docker Platform
: " : Compute Node
J Self-service Interfacg Job Scheduling |
[ Submit Image ] [ My Resource ]‘{/ Submit Job ]‘, ; Compute Node
Request View Request | C Nod
. 1 Metering Server / ompute Roce
Auto-scaling \M K N //Il/ g Compute Node
L Sc hed ler ||
giniNedce *—>[ Data Collector } =
] —

i

Auto-scaling Group

Local Storage

I
I
I
I
I
I
I
I
I
I
Docker Daemon :
I
I
I
I
I
I
I
I
I
|

—
Image Manager Node c
ontaine
Image Manager Node
Image Manager Node Singularity Platform |
Compute Node |
Image Manager — Docker Private Compute Node
Registry Compute Node
Compute Node
—
\.._____‘_‘—'_'______/
- Docker Imag L—1

Parallel File =
System

Service Consumers

____________________

Service Provider

Container-based

\
\
\
\
|
\
\
\
\
Singularity Daemon \
\
\
\
\
|
\
\
\

Service Creators

[ Developed ] [ Integrated ] [ Used
Service Service Provider Service
Consumer Creator
HPC as a Service Container-based HPC Cloud System e N
/ _ \ 4 Template
HPC Imdge Service Self Service Interface Management
Im g N /
C 1 Upload ( |
> - = / Job Management\ /Image Management\ Template
Image Image ] ) " ) n Create
_ Share J{  List o [ Job Provisioning [ mage 2 \ J
. y Provisioning =
) : ( Image ( Image g ( N Nd
Command Line | search J| Delete J o On-demand Billing [ Auto-scaling g Template
Tool \ % g \ ’ S Evaluate
: < Real-time Resource = |
/HPC Job Service \ o X Monitoring ) [ Task Parallelizing g -
= ) 41 { CommandLine \
Job History a . — Tool
[ Submit ][ Delete ] o k Job History Data J/ (W orkload Distributin g/ %
e 7 =+ Template List
[ Tob List ][ Job J ) V| &
Delete [ Virtualization [ Distribution ( Template Search ]
[ My Resource ]
View [ Container Platform Management J Template Delete
\ / e — Bl \k >
Infrastructure \ J
3. Implementation
' t-bed Cluster Conf t
est-0€ uster contriguration
—
| Auto-scaling Group ("
* PLSI Infrastructure 5
Image Metadata
Image Manager Server
Slave 1

Image Submit

Image Manager

-'
—|

Login Nodes

mage Manager Docker Private

—— Public Network: 1G Switch
= Management Network: 10G Switch
—  Data Network: InfiniBand Switch

LDAP Server

Server Server 5 Reoistr
Slave 2 - Job Metadata ey
| Server
Docker Cpntainer Pld form (\ut ﬁl
ubernete Job Submit Server
ﬁ' gi ' (PBSPro + Kubernetes)
— Calico Overlay Network P
lnhdend GPFS File

Singularity Containpr Platfor

. Switch GPFS Smrage

System Server /phome01/public

‘ /phome01/{userid}

4. Results
 Network Bandwidth Test

(deployed with one container per node

Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea

* MNIST Execution Time Test

(deployed with example code MNIST — a
simple classifier using TensorFlow)

using iperf3)
BANDWIDTH IPERF3 TEST
(MBITS/SEC)
10000 0300
9000 8500 % ==
8000 % % %
7000 % % %
6000 % % %
5000 4600 = = =
4000 % % % %
3000 % % % %
2000 1560 = = = —
000 = 98 %07 — = = =
o —== — = = — = =
2 S Y & X N
NE Qa{b 126) \<2 O ¢(\°) &
N4 N\ 00\ (gs\(’ COCJ\ ,\Q?rb

Bare-metal Singularity Docker

7000 5951.75
6095.9

5830 24
6000 4541.85

20 44174044651 |
3189.44 -

4000

6758 [
175831 2092,6306:

3000

Execution time (sec)

815.91

N
o
o
o

1000

the number of program

« MPI Performance Test

(deployed with two nodes using OSU
MPI benchmark tool)

(deployed with 4 nodes (with 40 cores)
for running MPI parallel tasks to check
MPI all-to-all personalized exchange
latency, broadcast latency)

..... -—m=Baremetal " =« Docker:: - =¢=Singularity. ——Baremetal Docker Singularity
10000 500000
T ~
=5 6000 @ 400000
S5 2000 < 300000 /
= 9 2000 O 200000 |
2 = 0 < 100000 4
<<= AN S 6‘° > qb v,,;o W a0 X t 0 i
&G RN - AL N A S S I AN N
N VR WO (0’5 c;a @\ °o°’
MESSAGE SIZE ) \Q
117 Baremetal - —+-Docker: = Singularity - ——Baremetal -m-Docker —+Singularity
1500 _.8000
1000 35 6000 x
2 500 p > 4000 /4
> + 22 o2 gt p! ‘
(z) ’ Nox b (X b Ak g oX ‘o X A0 M EZOOO - M 2 e
l,"_'l > (o"\:) QWD‘QO’(O% 5> b‘%’\b?)Q Z 0 Q&voﬁ@&vwm&#wwmﬁwomqwm
< N N (06 (o% 9 — AN OANDANS OO0 OMNSS 0N~
3 ’\/\ > ANNDOOOAMMNL O — AN LD
A AN <T 00 O NL 1N I 00
MESSAGE SIZE e eZds §

5. Conclusions

This container-based approach to HPC cloud contributes to
solving performance and workload management issues for
serviceability. Performance issues are verified by comparing
the results of network bandwidth, MPI bandwidth/latency,
TensorFlow-based MNIST code execution time in Bare-metal,

Docker and Singularity™ environments.

Image workload

management has been developed based on Celery-Redis

framework to distribute users’
workload management
Integrating

SOMe

Image requests. MPI Job

has been developed based on
functions

of Kubernetes (Docker

Orchestration Platform) and PBSPro (Job Scheduler). For ease
of use, all workload-related commands are provided through a
simple CLI tool (developed in Python). This research Is
expected to be an important study for providing cloud services

In a supercomputing infrastructure environment.
* Singularity can be used with any Job Scheduler directly.

[Acknowledgement]

This study has been performed as a subproject of KISTI's project “The National
Supercomputing Infrastructure Construction and Service [K-19-L02-C01-S01]”.




