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1. Introduction

Recently, the virtual machine (VM)-based high-performance computing (HPC) service has been provided in the cloud
environment to satisfy portability, flexibility, scalability, and reduction of deployment costs in the HPC field. However,
performance issues and workload management issues due to the limitations of VM are reducing the resource utilization of
HPC users. Therefore, we aim to provide a lightweight container-based cloud environment to HPC users. This container-
based approach consists of two main components: the image management system and the workload management system.
We have designed and implemented the system workflow and architecture considering ease of use and efficiency of
management. The results have been obtained by comparing network performance, MPI performance and a simple machine
learning code — MNIST between bare-metal and container-based (both in Docker and Singularity) environments.

2. Workflow and Architecture
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4. Results
 Network Bandwidth Test

(deployed with one container per node
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* MNIST Execution Time Test

(deployed with example code MNIST — a
simple classifier using TensorFlow)

using iperf3)
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« MPI Performance Test

(deployed with two nodes using OSU
MPI benchmark tool)

(deployed with 4 nodes (with 40 cores)
for running MPI parallel tasks to check
MPI all-to-all personalized exchange
latency, broadcast latency)
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5. Conclusions

This container-based approach to HPC cloud contributes to
solving performance and workload management issues for
serviceability. Performance issues are verified by comparing
the results of network bandwidth, MPI bandwidth/latency,
TensorFlow-based MNIST code execution time in Bare-metal,

Docker and Singularity™ environments.
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management has been developed based on Celery-Redis
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has been developed based on
functions

of Kubernetes (Docker

Orchestration Platform) and PBSPro (Job Scheduler). For ease
of use, all workload-related commands are provided through a
simple CLI tool (developed in Python). This research Is
expected to be an important study for providing cloud services

In a supercomputing infrastructure environment.
* Singularity can be used with any Job Scheduler directly.
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