
A Container-based Approach to HPC Cloud
Guohua Li (ghlee@kisti.re.kr), Joon Woo and Taeyoung Hong

Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea 

1. Introduction
Recently, the virtual machine (VM)-based high-performance computing (HPC) service has been provided in the cloud

environment to satisfy portability, flexibility, scalability, and reduction of deployment costs in the HPC field. However,

performance issues and workload management issues due to the limitations of VM are reducing the resource utilization of

HPC users. Therefore, we aim to provide a lightweight container-based cloud environment to HPC users. This container-

based approach consists of two main components: the image management system and the workload management system.

We have designed and implemented the system workflow and architecture considering ease of use and efficiency of

management. The results have been obtained by comparing network performance, MPI performance and a simple machine

learning code – MNIST between bare-metal and container-based (both in Docker and Singularity) environments.

[Acknowledgement]
This study has been performed as a subproject of KISTI's project “The National

Supercomputing Infrastructure Construction and Service [K-19-L02-C01-S01]”.

• System Workflow 

2. Workflow and Architecture

• System Architecture 

3. Implementation

• Test-bed Cluster Configuration 

4. Results

5. Conclusions

• Network Bandwidth Test
(deployed with one container per node 

using iperf3)

1560
938 907

4600

8500
8900

9300

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 
Lin

ux
 B

rid
ge

2 
W

ea
ve

 N
et

3 
Fla

nn
el

4 
C
al

ic
o 

(I
P-in

-I
P)

5 
C
al

ic
o 

(n
on

e)

6 
Sin

gu
la
rit

y

7 
B
ar

e-
m

et
al

BANDWIDTH IPERF3 TEST 
(MBITS/SEC)

• MPI Performance Test
(deployed with two nodes using OSU 

MPI benchmark tool)

• MNIST Execution Time Test
(deployed with example code MNIST – a 

simple classifier using TensorFlow)

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4

1681.34

3052.6

4417.46

5830.24

1758.31

3189.44

4541.85

5951.75

1815.91

3067.58

4446.51

6095.9

E
x
ec

u
ti

o
n

 t
im

e 
(s

ec
)

the number of program

Bare-metal Singularity Docker

0
2000
4000
6000
8000

10000

B
A

N
D

W
ID

T
H

 

(M
B

/S
E

C
)

MESSAGE SIZE 

Baremetal Docker Singularity

0

500

1000

1500

L
A

T
E

N
C

Y
 (

U
S

)

MESSAGE SIZE

Baremetal Docker Singularity

(deployed with 4 nodes (with 40 cores) 

for running MPI parallel tasks to check 

MPI all-to-all personalized exchange 

latency, broadcast latency)

0
100000
200000
300000
400000
500000

L
A

T
E

N
C

Y
 (

U
S

)

Baremetal Docker Singularity

0

2000

4000

6000

8000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6L
A

T
E

N
C

Y
 (

U
S

)

Baremetal Docker Singularity

This container-based approach to HPC cloud contributes to

solving performance and workload management issues for

serviceability. Performance issues are verified by comparing

the results of network bandwidth, MPI bandwidth/latency,

TensorFlow-based MNIST code execution time in Bare-metal,

Docker and Singularity∗ environments. Image workload

management has been developed based on Celery-Redis

framework to distribute users’ image requests. MPI Job

workload management has been developed based on

integrating some functions of Kubernetes (Docker

Orchestration Platform) and PBSPro (Job Scheduler). For ease

of use, all workload-related commands are provided through a

simple CLI tool (developed in Python). This research is

expected to be an important study for providing cloud services

in a supercomputing infrastructure environment.
* Singularity can be used with any Job Scheduler directly.


