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Figure 1: Visualised Call graph of the Studied Application for Skylake testbed
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Table 2: Statistics of Processing Stages Times

for (r = 0..num_rows ; r+=blk_size/8){ 

 for (c = 0..num_cols; c+=blk_size/8){ 

         Prepare_input_block; //blk_size x blk_size 

  blk_amp_spec_slope_eo_vect(input_block, …); 

  Save_output; 

 } 

} 

Figure 2: Processing in moving window 

Step 1: Profiling

Starting point of any application performance analysis is a profiling. The profiling allows 
us to understand an application dynamical structure and identify sections of program code 
consuming the most parts of execution time. 
The  Intel® VTune™ Amplifier XE [2] results have been used to visualize call graph of  
the application under the study. 

Step 4: FLOPs Estimations 

Table 3: Models
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Figure 4: FFT  
 

Figure 5: Dgels  
 

30
0

40
0

50
0

60
0

70
0

80
0

90
0

N

F
LO

P
S

16 24 32 40 48 56 64 72

Broadwell

1st model
2nd model 60

0
70

0
80

0
90

0
10

00
11

00
12

00

N

F
LO

P
S

16 32 40 48 56 64 72

Skylake

1st model
2nd model

To find out constants in theoretical asymptotic expressions, we have measured number of 
retired FLOPs-instructions for basic blocks of moving window processing: FFT and 
DGELS. 

We have collected performance data for all studied architectures by performance 
monitoring suite LIKWID [4]. The overall number of FLOPs-instruction refers to a total 
sum of 64-, 128-, 256- and 512-bit FLOPs-instructions multiplied by appropriate factors:  

NFLOPs = N64bit flops + 2·(N128 bit flops) + 4·(N256 bit flops) + 8·(N512 bit flops) 

Empirical relations between the linear size N of moving window and the number of retired 
FLOPs-instructions are presented on Fig. 4-5 and Table 4. 

So, for each basic block we need to estimate: 

Aspen (Abstract Scalable Performance Engineering Notation) [3] is a domain specific 
language for analytical performance modeling. It includes a formal specification of an 
application's performance behavior and an abstract machine model; but it also includes 
collection of costs that can be extracted from direct performance measurements to refine 
the model. 

In the framework of Aspen DSL paradigm, the execution time is defined as follows (see 
Formula 1). 

An ideal performance approximation for computation kernel runtime depends only on the 
number of executed flops, number of processed bytes and the control flow composition 
(serial or parallel) of subkernels runtimes: 

Step 2: Aspen

  number  of flops  

   number of bytes  
depends on algorithm, input parameters 

 

Step 3: Basic Blocks
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Figure 3: The blk_amp_spec_slope_eo_vect kernel 

Dividing blk_amp_spec_slope_eo_vect into basic blocks 

 
Codefragments with runtime <1% were skipped

 

Step 6: Modeling

Table 1: Testbeds: Technical Specifications

Codename Processors (CPU + GPU)
Frequency

Memory

Broadwell 128 GB DDR4/2400MHz 
 

2 x Intel® Xeon® E5-2697A v4

Skylake 2 x Intel® Xeon® Gold 6150 192 GB DDR4/2666MHz
 

In the Table 1 codenames and specifications of the studied testbeds are listed. 

Application

Hardware

Introduction

Basic

2.60 GHz 3.60 GHz

Turbo

2.70 GHz 3.70 GHz

Accurate assessment and predicting the applications performance are essential for the effective usage 
of modern multi-core computers.  Performance models can allow to describe the dynamical behavior 
of applications on different computing platforms so they can be useful for the design of future 
supercomputers. 

In this research, we propose  the application performance assessment method based on Aspen DSL 
modeling complimented with direct performance measurements and experimental data analyzing. 

On the poster an analytical performance model for multispectral images processing application is 
presented as an example of more general approach. The model construction steps include application 
profiling, experimental direct measurements of actual FLOPs, processor cycles and different memory 
usage data. 

The studied application is the most computationally intensive part of an automatic 
system for detecting fishing boat lights from nighttime images of the VIIRS multispectral 
radiometer [1].   

  The system detects isolated bright spikes that are sharply visible on the sea's night 
surface. In the moonlight, the interference from clouds and lunar glint are taken into 
account as well. In the current work, a module based on Direct Fourier Transformation in 
the moving window is modeled. 

Summary

The poster presents the practical approach to model application performance by the 
combining theoretical asymptotical bounds with the information obtained from 
experimental data.  
This method is based on Aspen DSL representation of analytical expression for application 
runtime and its parameterization by the results of measurements of number of FLOPs-
instructions and memory requests.   
Our approach consists of the following steps:  

0. Describing the abstract machine model in terms of crucial technical parameters such 
as CPU and DDR DRAM frequencies and so on. 

1. Application profiling and call graph visualization to identify the main computational 
intensive kernels. 

2. For each kernel from step 1 measurements of CPU cycles with high accuracy to 
separate its basic blocks. 

3. For each BB from step 2 development of micro-benchmarks; analyzing the CPU and 
memory usage for various inputs; composing the analytical expression for FLOPs and 
memory requests as functions of input parameters. 

4. Constructing the Aspen DSL model for application runtime based on data collected 
through steps 1-3.  

5. Prediction of the application runtime using machine model (step 0) and Aspen model 
(step 4). 

6. Application runtime adjustments using micro-benchmark that simulates the basic 
memory access pattern for our application. 

Described approach allows creating machine-independent model that can be adjusted to 
assess performance for a given computing platform.  

 

 Work in progress involves more accurate assessment of the influence of caches and main 
memory bandwidth on the performance. Future work will include verifications and 
refinements for architectures, for example Intel Xeon Phi family. An important component 
is to fully extend the proposed method to multi-threaded applications. There are some 
challenges that has to be tackled to increase the accuracy of the multi-core performance 
predictions models [7].  

Future Work

Step 5: Memory Usage

Memory contention resulting can become a significant component (i.e., over 50 percent) of 
an application’s execution time. According to the paper [5] a model that ignores memory 
contention predicts an average execution time about four times smaller than the 
experimental value. 
Although some analytical models capable of estimating with an acceptable accuracy the 
execution time of jobs running on multi-core machines, it requires set of highly detailed 
measurements of memory access and service time. It is hard to assess these parameters for 
single application with limited input data. Actually, according to the LIKWID data almost 
all memory operations for our application have been processed in cache hierarchy. 
 
Thus, in this work we have developed the micro-benchmark that simulates the basic 
memory access pattern without performing actual computation for the most intensive part 
of the application - moving window processing stage. 

The values of memory usage time are computed as follows. First, we have collected the 
load/evict data for all cache levels using LIKWID performance counters. Then, using the 
L1, L2 and L3 cache latency listed in processors detailed specification [6] we can estimate
memory usage time as follows: 

3Where: 

pmc0 - L2 to L1 load data 

pmc1 - L1 to L2 evict data 

pmc2 - L3 to L2 load data 

pmc3 - L2 to L3 evict data  

According to the estimated results of the benchmark described above, we have found the 
empirical relations between the linear size N of moving window and the memory usage 
impact on processing time (see Fig. 6 ). 

L1latency – 5 cycles  

L2latency – 14 cycles 

L3latency – 50-70 cycles 

Figure 6: Memory Usage  
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According to the call graph (Fig. 1), the most computationally intensive part of the 
application is the moving window processing stage (spectral_map function, Fig. 2). The 
detailed statistics on processing stages for all architectures is shown in Table 2.  

The main computational kernel of the application is the double nested for-cycle, each 
iteration of which includes the preparation of input block of pixels (“moving window”), 
the block processing, and the writing results (see Fig. 3). 

Each iteration of the main computational kernel was considered as subkernel splatted into 
9 basic blocks (BB) consuming together more than 95% of runtime. BB were chosen on 
the data collected by time stamp counter (TSC) register - data highest granularity or 
precision timer. 

The blk_amp_spec_slope_eo_vect kernel splitting results are presented on Fig. 3. 
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Table 5 shows the measured and modeling results for Skylake and Broadwell-based 
platforms. It should be noted, that modeling results are calculated for a fixed processor and 
memory frequency, while modern architectures support dynamic frequency scaling for 
both CPU and DRAM. So frequency of a processor can be automatically adjusted 
depending on the actual needs, which affects application performance. For that reason, 
table 5 includes modeling results for two available processor frequencies for both 
architectures. Our experiments used single-threaded version of applications. We will 
investigate the impact of multi-threaded version of this application in future work. 
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Table 5: Modeling Results for Skylake Testbed
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Table 4: Modeling Results for Broadwell Testbed
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In addition, the constructed analytical models can be recalculated and used for 
performance estimation for other hardware with similar architecture (for example, with 
other CPUs from the same CPU line). Table 5 (last row) shows the modeling results for 
Skylake using analytical model constructed for Broadwell-based platforms. This 
performance assessments did not require a Skylake testbed benchmarking, it only uses 
specification data. 


