
Development of Performance Assessment Method
Based on Aspen DSL and Micro-Kernels
benchmarking

RSC Technologies

Ekaterina Tyutlyaeva, Alexander Moskovsky, Igor Odintsov, Sergey Konyukhov

Figure 1: Visualised Call graph of the Studied Application for Skylake testbed

main
100.00%

spectral_map
91.03%

91.03%

hdf_read_double_2d
5.82%

__intel_avx_rep_memcpy
2.26%

wiener2
1.50%

vdLog10
0.61%

blk_amp_spec_slope_eo_vect
87.14%

_mm_malloc
1.86%

H5Dread
5.82%

LAPACKE_dgels
6.43%

vdLn
1.94%

87.14%

LAPACKE_dgels
6.43%

DFFT
50.16%

50.16%

Processing
Stage Broadwell Skylake

Input

Preprocessing

Moving Window

Postprocessing

Output

Total

1.44 sec

0.616 sec

41.2 sec

0.0486 sec

0.474 sec

43.3 sec

3.3%

1.4%

94.1%

0.1%

1.1%

100%

1.04 sec

0.555 sec

38.3 sec

0.0341 sec

0.399 sec

40.3 sec

2.6%

1.4%

95.0%

0.1%

0.9%

100%

Table 2: Statistics of Processing Stages Times

for (r = 0..num_rows ; r+=blk_size/8){

 for (c = 0..num_cols; c+=blk_size/8){

 Prepare_input_block; //blk_size x blk_size

 blk_amp_spec_slope_eo_vect(input_block, …);

 Save_output;

 }

}

Figure 2: Processing in moving window

Step 1: Profiling

Starting point of any application performance analysis is a profiling. The profiling allows
us to understand an application dynamical structure and identify sections of program code
consuming the most parts of execution time.
The Intel® VTune™ Amplifier XE [2] results have been used to visualize call graph of
the application under the study.

Step 4: FLOPs Estimations

Table 3: Models

Codename

Broadwell

Skylake

FFT DGels

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

NxN

F
LO

P
S

16x16 32x32 48x48 56x56 64x64 72x72

outlier

outlier

outlier

Broadwell

1st model
2nd model 0

50
00

0
10

00
00

15
00

00
20

00
00

NxN

F
LO

P
s

16x16 32x32 48x48 56x56 64x64 72x72

outlier

outlier

Skylake

1st model
2nd model

Figure 4: FFT

Figure 5: Dgels

30
0

40
0

50
0

60
0

70
0

80
0

90
0

N

F
LO

P
S

16 24 32 40 48 56 64 72

Broadwell

1st model
2nd model 60

0
70

0
80

0
90

0
10

00
11

00
12

00

N

F
LO

P
S

16 32 40 48 56 64 72

Skylake

1st model
2nd model

To find out constants in theoretical asymptotic expressions, we have measured number of
retired FLOPs-instructions for basic blocks of moving window processing: FFT and
DGELS.

We have collected performance data for all studied architectures by performance
monitoring suite LIKWID [4]. The overall number of FLOPs-instruction refers to a total
sum of 64-, 128-, 256- and 512-bit FLOPs-instructions multiplied by appropriate factors:

NFLOPs = N64bit flops + 2·(N128 bit flops) + 4·(N256 bit flops) + 8·(N512 bit flops)

Empirical relations between the linear size N of moving window and the number of retired
FLOPs-instructions are presented on Fig. 4-5 and Table 4.

So, for each basic block we need to estimate:

Aspen (Abstract Scalable Performance Engineering Notation) [3] is a domain specific
language for analytical performance modeling. It includes a formal specification of an
application's performance behavior and an abstract machine model; but it also includes
collection of costs that can be extracted from direct performance measurements to refine
the model.

In the framework of Aspen DSL paradigm, the execution time is defined as follows (see
Formula 1).

An ideal performance approximation for computation kernel runtime depends only on the
number of executed flops, number of processed bytes and the control flow composition
(serial or parallel) of subkernels runtimes:

Step 2: Aspen

 number of flops

 number of bytes
depends on algorithm, input parameters

Step 3: Basic Blocks

47...421 2 3 48 17 35

BB1 BB2
BB3

BB8 BB9

double "for"
loops FFT

dgels vdLn

Figure 3: The blk_amp_spec_slope_eo_vect kernel

Dividing blk_amp_spec_slope_eo_vect into basic blocks

Codefragments with runtime <1% were skipped

Step 6: Modeling

Table 1: Testbeds: Technical Specifications

Codename Processors (CPU + GPU)
Frequency

Memory

Broadwell 128 GB DDR4/2400MHz

2 x Intel® Xeon® E5-2697A v4

Skylake 2 x Intel® Xeon® Gold 6150 192 GB DDR4/2666MHz

In the Table 1 codenames and specifications of the studied testbeds are listed.

Application

Hardware

Introduction

Basic

2.60 GHz 3.60 GHz

Turbo

2.70 GHz 3.70 GHz

Accurate assessment and predicting the applications performance are essential for the effective usage
of modern multi-core computers. Performance models can allow to describe the dynamical behavior
of applications on different computing platforms so they can be useful for the design of future
supercomputers.

In this research, we propose the application performance assessment method based on Aspen DSL
modeling complimented with direct performance measurements and experimental data analyzing.

On the poster an analytical performance model for multispectral images processing application is
presented as an example of more general approach. The model construction steps include application
profiling, experimental direct measurements of actual FLOPs, processor cycles and different memory
usage data.

The studied application is the most computationally intensive part of an automatic
system for detecting fishing boat lights from nighttime images of the VIIRS multispectral
radiometer [1].

 The system detects isolated bright spikes that are sharply visible on the sea's night
surface. In the moonlight, the interference from clouds and lunar glint are taken into
account as well. In the current work, a module based on Direct Fourier Transformation in
the moving window is modeled.

Summary

The poster presents the practical approach to model application performance by the
combining theoretical asymptotical bounds with the information obtained from
experimental data.
This method is based on Aspen DSL representation of analytical expression for application
runtime and its parameterization by the results of measurements of number of FLOPs-
instructions and memory requests.
Our approach consists of the following steps:

0. Describing the abstract machine model in terms of crucial technical parameters such
as CPU and DDR DRAM frequencies and so on.

1. Application profiling and call graph visualization to identify the main computational
intensive kernels.

2. For each kernel from step 1 measurements of CPU cycles with high accuracy to
separate its basic blocks.

3. For each BB from step 2 development of micro-benchmarks; analyzing the CPU and
memory usage for various inputs; composing the analytical expression for FLOPs and
memory requests as functions of input parameters.

4. Constructing the Aspen DSL model for application runtime based on data collected
through steps 1-3.

5. Prediction of the application runtime using machine model (step 0) and Aspen model
(step 4).

6. Application runtime adjustments using micro-benchmark that simulates the basic
memory access pattern for our application.

Described approach allows creating machine-independent model that can be adjusted to
assess performance for a given computing platform.

 Work in progress involves more accurate assessment of the influence of caches and main
memory bandwidth on the performance. Future work will include verifications and
refinements for architectures, for example Intel Xeon Phi family. An important component
is to fully extend the proposed method to multi-threaded applications. There are some
challenges that has to be tackled to increase the accuracy of the multi-core performance
predictions models [7].

Future Work

Step 5: Memory Usage

Memory contention resulting can become a significant component (i.e., over 50 percent) of
an application’s execution time. According to the paper [5] a model that ignores memory
contention predicts an average execution time about four times smaller than the
experimental value.
Although some analytical models capable of estimating with an acceptable accuracy the
execution time of jobs running on multi-core machines, it requires set of highly detailed
measurements of memory access and service time. It is hard to assess these parameters for
single application with limited input data. Actually, according to the LIKWID data almost
all memory operations for our application have been processed in cache hierarchy.

Thus, in this work we have developed the micro-benchmark that simulates the basic
memory access pattern without performing actual computation for the most intensive part
of the application - moving window processing stage.

The values of memory usage time are computed as follows. First, we have collected the
load/evict data for all cache levels using LIKWID performance counters. Then, using the
L1, L2 and L3 cache latency listed in processors detailed specification [6] we can estimate
memory usage time as follows:

3Where:

pmc0 - L2 to L1 load data

pmc1 - L1 to L2 evict data

pmc2 - L3 to L2 load data

pmc3 - L2 to L3 evict data

According to the estimated results of the benchmark described above, we have found the
empirical relations between the linear size N of moving window and the memory usage
impact on processing time (see Fig. 6).

L1latency – 5 cycles

L2latency – 14 cycles

L3latency – 50-70 cycles

Figure 6: Memory Usage

References:

According to the call graph (Fig. 1), the most computationally intensive part of the
application is the moving window processing stage (spectral_map function, Fig. 2). The
detailed statistics on processing stages for all architectures is shown in Table 2.

The main computational kernel of the application is the double nested for-cycle, each
iteration of which includes the preparation of input block of pixels (“moving window”),
the block processing, and the writing results (see Fig. 3).

Each iteration of the main computational kernel was considered as subkernel splatted into
9 basic blocks (BB) consuming together more than 95% of runtime. BB were chosen on
the data collected by time stamp counter (TSC) register - data highest granularity or
precision timer.

The blk_amp_spec_slope_eo_vect kernel splitting results are presented on Fig. 3.

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

N

T
_m

em
, s

ec

16 24 32 40 48 56 64 72

outlier

outlier

Skylake

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

N

T
_m

em
, s

ec

16 24 32 40 48 56 64 72

outlier

Broadwell

Table 5 shows the measured and modeling results for Skylake and Broadwell-based
platforms. It should be noted, that modeling results are calculated for a fixed processor and
memory frequency, while modern architectures support dynamic frequency scaling for
both CPU and DRAM. So frequency of a processor can be automatically adjusted
depending on the actual needs, which affects application performance. For that reason,
table 5 includes modeling results for two available processor frequencies for both
architectures. Our experiments used single-threaded version of applications. We will
investigate the impact of multi-threaded version of this application in future work.

1. Elvidge, Christopher D. and Zhizhin, Mikhail and Baugh, Kimberly and Hsu, Feng-Chi: Automatic Boat
Identification System for VIIRS Low Light Imaging Data. Remote Sensing Journal, Vol.7, Num. 3, pp. 3020 --
3036 ISSN 2072-4292, doi: 10.3390/rs70303020 (2015)

2. Intel® VTune™ Amplifier. URL: https://software.intel.com/en-us/vtune/
3. K. L. Spafford and J. S. Vetter: Aspen: A domain spec ific language for performance modeling. SC '12:

Proceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis, Salt Lake City, UT, 2012, pp. 1 -11. doi: 10.1109/SC.2012.20

4. Treibig, G. Hager and G. Wellein : LIKWID: A lightweight performance -oriented tool suite for x86 multicore
environments. Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools and Tool
Infrastructures, San Diego CA, September 13, 2010. DOI: 10.1109/ICPPW.2010 .38
Preprint: http://arxiv.org/abs/1004.4431

5. Bardhan and D. A. Menascé: Predicting the Effect of Memory Contention in Multi-Core Computers Using
Analytic Performance Models. In IEEE Transactions on Computers, vol. 64, no. 8, pp. 2279-2292, 1 Aug. 2015.
doi: 10.1109/TC.2014.2361511

6. Skylake (server) Microarchitectures. URL: https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
7. Markus Frank, Floriment Klinaku, and Steffen Becker. 2018. Challenges in Multicore Performance Predictions.

In Companion of the 2018 ACM/SPEC International Conference on Performance Engineering (ICPE '18). ACM,
New York, NY, USA, 47 -48. doi: https://doi.org/10.1145/3185768.3185773

Table 5: Modeling Results for Skylake Testbed

NxN

Texp

Tbasic_model

Basic Frequency
 Tbasic_model

Turbo Mode
 Tmemory_extended_model

Basic Frequency
 Tmemory_extended_model

Turbo Frequency

NxN

Texp

Tbasic_model

Basic Frequency
 Tbasic_model

Turbo Mode
 Tmemory_extended_model

Basic Frequency
 Tmemory_extended_model

Turbo Frequency

Table 4: Modeling Results for Broadwell Testbed

40.268

24x24 32x32 48x48 56x56 64x64 40x40

22.444

16.993

25.276

18.255

20.920

15.988

12.333

18.030

13.022

28.078

22.263

16.869

23.929

17.282

26.095

22.593

16.959

24.051

17.37

25.039

23.042

17.438

24.369

17.599

21.603

18.755

14.345

19.996

14.442

24x24 32x32 48x48 56x56 64x64 40x40

32.275

22.856

16.635

23.014

16.75

16.737

15.210

11.07

15.533

11.305

22.128

23.249

16.921

23.782

17.309

19.435

23.702

17.251

24.496

17.829

19.469

24.325

17.705

25.428

18.507

16.343

19.016

13.84

20.480

14.906

Tbasic_model_Broadwell

Basic Frequency

 21.766 21.592 21.911 22.345 18.207 15.534

In addition, the constructed analytical models can be recalculated and used for
performance estimation for other hardware with similar architecture (for example, with
other CPUs from the same CPU line). Table 5 (last row) shows the modeling results for
Skylake using analytical model constructed for Broadwell-based platforms. This
performance assessments did not require a Skylake testbed benchmarking, it only uses
specification data.

