
a a

Performance
Impacts:

Proposed Solutions:
• Enhanced SHArP network offload

• Target: Small Messages
• Data Partitioning-based Multi-leader design

• Target: Medium Messages
• XPMEM/SHMEM-based Scalable and

adaptive design
• Target: Large Messages

Research Challenges:
• Efficient	usage	of	network	offload	mechanisms	and	

high-throughput network
• Enhanced	usage	of	one-sided	semantics	and	cache	

locality
• Efficient pipeline	and	overlap	across	various	design	

phases
• Dynamic	and	adaptive	communication

Importance of Reduction
Operations:
• One of the most popular MPI

collectives
• Widely used in Deep Learning

frameworks and Scientific applications
• Extensive usage of compute resources

as well as network

Challenges
• Current designs are not NUMA-aware

• Limited performance due to extra cross socket transfers
• Low performance for medium and large message ranges

Approaches
1. Topology-aware (hierarchal): Two-level designs (intra-node reduce +

inter-node Allreduce)
2. Flat designs: Tree-based designs

Reduction Operations on Modern Supercomputers: Challenges and Solutions
Mohammadreza Bayatpour, Jahanzeb Maqbool Hashmi, Sourav Chakraborty, Hari Subramoni, Dhabaleswar K. Panda

0

0.2

0.4

0.6

0.8

56 224 448D
D

O
T

 T
im

in
g

of
 H

PC
G

(S

ec
on

ds
)

Number o Processes

MVAPICH2

Proposed-Scoket-
Based
MVAPICH2+SHArP

HPCG (28 PPN) MPI_Allreduce
(4,096 Processes, 64 Nodes, 64 PPN)

MiniAMR (32 PPN)

-10

10

30

50

70

512 1024 1280

La
te

nc
y
(s
)

Number of Processes

MVAPICH2 DPML IMPI

0

1000

2000

3000

4000

8K 16K 32K 64K 128K256K

La
te

nc
y
(u
s)

Message Size

MVAPICH2 DPML IMPI

0

500

1000

1500

2000

16M 32M 64M 128M

La
te

nc
y

(m
s)

Message Size

MVAPICH2
Proposed-SHMEM
OpenMPI

MPI_Allreduce
(1,536 Processes, 64 Nodes, 24 PPN)

0
100
200
300
400
500
600

112 224 448 896T
im

e
Ta

ke
n

(s
ec

on
ds

)
Number o Processes

MVAPICH2
Proposed-SHMEM
Proposed-XPMEM

AlexNet Neural Network Training using
CNTK

MPI_Allreduce
(448 Processes, 16 Nodes, 28 PPN)

0

5

10

15

20

4 8 16 32 64 128

La
te

nc
y

(u
s)

Message Size (Byte)

Approaches
1. Onloading approach: CPU-assisted approach

2. Offloading approach: using HCA (CORE-Direct) or Switch (SHArP)

NUMA-Aware SHArP Design
• Mixture of the CPU-assisted designs with Offloaded approaches

• Topology-aware (hierarchal): Two-level designs
• Introducing socket-level leader process to to limit the QPI transfers
• Allowing the leader process in each socket to use SHArP
• Using CPU for intra-socket reduction operations

Performance of SHArP Designs on XEON+IB

Challenges
• Do not take advantage of high concurrency in new architectures

(Hierarchical designs)
• Too many inter-node communication and deep hierarchy (Tree-

based designs)

Performance of DPML Designs on KNL+Omni-Path

0
5

10
15
20
25

4K 16K 64K 256K R
el

at
iv

e
T

hr
ou

gh
pu

t
Message Size (Byte)

Xeon (Haswell) + IB (EDR - 100Gbps)

2-pair 4-pair
8-pair 16-pair

0
5

10
15
20
25

4K 16K 64K 256K

R
el

at
iv

e
T

hr
ou

gh
pu

t

Message Size (Byte)

Shared Memory Xeon Phi (KNL)

2-pair 4-pair
8-pair 16-pair

Communication Characteristics of Modern Architectures
• Supports many concurrent intra-node as well as inter-node

communications (similar to Omni-Path)

Scalable Hierarchical Aggregation Protocol (SHArP)
• Manipulation of data while it is being transferred in the switch

network

Data Partitioning based Multi-Leader (DPML) Design
• Having shallow hierarchies with small depth and large number of

children per parent
• Taking advantage of high-throughput of concurrent medium

messages

Approaches
1. Intra-node zero copy mechanism

2. Inter-node one-sided communications
3. Inter-node pipelining with intra-node operations
4. Pipelined inter-node Allreduce
5. Communication Adaptive

Optimization Methods

Applicability 1 2 3 4 5

Baidu-Allreduce GPU ❌ ❌ ✔ ✔ ❌

Linear Pipelining GPU ❌ ❌ ✔ ✔ ❌

Reduce-scatter-Allgather CPU/GPU ❌ ❌ ❌ ❌ ❌

Segmented Ring GPU/CPU ❌ ❌ ✔ ✔ ❌

XPMEM-based Reduction CPU ✔ ❌ ❌ ❌ ❌

Proposed “SALaR” CPU ✔ ✔ ✔ ✔ ✔

Various Designs:

Challenges
• Efficient pipeline of various steps and usage of XPMEM/SHMEM

• Efficient utilization of compute resources in all processes
• Orchestrating the data transfers to effectively utilize the network

bandwidth without oversubscribing a particular link

Performance of SALaR Designs on XEON+IB

1. SALaR-SHMEM/XPMEM: A pipelined
Allreduce design which uses XPMEM/SHMEM
for intra-node reduction and SALaR-Inter for
inter-node reduction. Intra-node operation is
overlapped with inter-node operation.

2. SALaR-Inter: An efficient one-sided-based
Inter-node Allreduce

SALaR-Inter Phases

SALaR-SHMEM Timeline

Naive SHArP Design
• SHArP only used in inter-node reduction operation

• Step 1: Intra-node reduction by one process in each node
• Step 2: Then Inter-node Allreduce using SHArP
• Step 3: Broadcast the final results from node-leader to other

processes

Scalable and Adaptive Designs for Large Messages
Reduction Collectives (SALaR)

Im
pa

ct
Pr

op
os

ed
 D

es
ig

ns
C

ha
lle

ng
es

O
ve

rv
ie

w

Large Messages

c Baidu Allreduce Design: https://github.com/baidu- research/baidu-allreduce
d Efficient communications in training large scale neural networks, Zhao et al, Thematic Workshops ACMMM2017

e Bandwidth optimal all-reduce algorithms for clusters of workstations, Patarasuk et al, Journal of Parallel and Distributed Comp ‘09
f Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores,	Hashmi	et	al,	IPDPS	‘17

c

d

e

f

References:

Courtesy Mellanox Technologies

Physical Network Topology SHArP Logical Tree

56%52%
41%

24%

73%

40%

Intra-node Reduce
Chunk {i}

Bcast Chunk
{i-1}

Wait
Intra-node Reduce

Chunk {i+1}
Bcast

Chunk {i}
Wait

Inter-node Allreduce Chunk {i-1} Bcast Chunk
{i-1}

Inter-node Allreduce Chunk {i}
Bcast

Chunk {i}
Process 1
(Node Leader)

Intra-node Reduce
Chunk {i}

Bcast Chunk
{i-1}

Wait
Intra-node Reduce

Chunk {i+1}
Bcast

Chunk {i}
Wait

Process 3

Intra-node Reduce
Chunk {i}

Bcast Chunk
{i-1}Wait

Intra-node Reduce
Chunk {i+1}

Bcast
Chunk {i}

WaitProcess P
* * * * * *

Timeline of the Processes in Node 0

Other nodes are similar

Process 2

Iteration {i} Iteration {i+1}

Medium MessagesSmall Messages

Node 0

…D1 D1 … D1 D2 D2 … D2 DL DL … DL

…R’1 … R’2 … R’L …

Concurrent Intra-Node Reduction by
Leader processes

Local Copy to Shared Memory

…

D1

D2

…
DL

D1 D1 … D1 D2 D2 … D2 DL DL … DL

…
D1

D2

…
DL

D1

D2

…
DL

D1

D2

…
DL

Process 1Process 2 Process 3 Process N

…R’1 … R’2 … R’L …

…R’1 … R’2 … R’L …

…R’1 … R’2 … R’L …

Concurrent Inter-Node Allreduce by
Leaders with same index…R1 … R2 … RL …

R1

R2

…
RL

R1

R2

…
RL

R1

R2

…
RL

R1

R2

…
RL

…

Process 1 Process 2 Process 3 Process N

Local Copy to Individual Processes

L= Number of
Leaders
N= Processes
Per Node (PPN)

Node 1

Node h

D1

D2

…
DP

…
D1

D2

…
DP

D1

D2

…
DP

D1

D2

…
DP

Node 1 Node 2 Node 3 Node P

R1

D2

…
DP

…
D1

R2

…
DP

D1

D2

…
RP

D1

D2

…
DP

Node 1 Node 2 Node 3 Node P
Process 1

Process 2

Process P

…

Node 1 Node 2 Node 3 Node P

R1

R2

…
RP

R1

R2

…
RP

R1

R2

…
RP

R1

R2

…
RP

Send Buffer of Each Process

Process X Reduces Partition X

Allgather the Reduced Partitions

Benchmark
Level

Scientific
Apps

Deep Learning
Apps

73%

25%
40%

DPML Phases

Scalable Reduction Collectives with Data Partitioning-based Multi-Leader Design, Bayatpour et al, Supercomuting’17, Denver, Co.
SALaR: Scalable and Adaptive Designs for Large Message Reduction Collectives, Bayatpour et al, IEEE Cluster’18, Belfast. UK

a

a
b

a
b

