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Performance 
Impacts:

Proposed Solutions:
• Enhanced SHArP network offload 

• Target: Small Messages
• Data Partitioning-based Multi-leader design 

• Target: Medium Messages
• XPMEM/SHMEM-based Scalable and 

adaptive design 
• Target: Large Messages

Research Challenges:
• Efficient	usage	of	network	offload	mechanisms	and	

high-throughput network
• Enhanced	usage	of	one-sided	semantics	and	cache	

locality
• Efficient pipeline	and	overlap	across	various	design	

phases
• Dynamic	and	adaptive	communication

Importance of Reduction 
Operations:
• One of the most popular MPI 

collectives
• Widely used in Deep Learning 

frameworks and Scientific applications 
• Extensive usage of compute resources 

as well as network

Challenges
• Current designs are not NUMA-aware

• Limited performance due to extra cross socket transfers
• Low performance for medium and large message ranges 

Approaches
1. Topology-aware (hierarchal):  Two-level designs (intra-node reduce + 

inter-node Allreduce)
2. Flat designs: Tree-based designs 

Reduction Operations on Modern Supercomputers: Challenges and Solutions
Mohammadreza Bayatpour, Jahanzeb Maqbool Hashmi, Sourav Chakraborty, Hari Subramoni, Dhabaleswar K. Panda
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Approaches
1. Onloading approach: CPU-assisted approach

2. Offloading approach: using HCA (CORE-Direct) or Switch (SHArP)

NUMA-Aware SHArP Design
• Mixture of the CPU-assisted designs with Offloaded approaches

• Topology-aware (hierarchal):  Two-level designs
• Introducing socket-level leader process to to limit the QPI transfers
• Allowing the leader process in each socket to use SHArP
• Using CPU for intra-socket reduction operations

Performance of SHArP Designs on XEON+IB

Challenges
• Do not take advantage of high concurrency in new architectures 

(Hierarchical designs)
• Too many inter-node communication and deep hierarchy (Tree-

based designs)

Performance of DPML Designs on KNL+Omni-Path
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Communication Characteristics of Modern Architectures
• Supports many concurrent intra-node as well as inter-node 

communications (similar to Omni-Path)

Scalable Hierarchical Aggregation Protocol (SHArP)
• Manipulation of data while it is being transferred in the switch 

network

Data Partitioning based Multi-Leader (DPML) Design 
• Having shallow hierarchies with small depth and large number of 

children per parent 
• Taking advantage of high-throughput of concurrent medium 

messages

Approaches
1. Intra-node zero copy mechanism

2. Inter-node one-sided communications
3. Inter-node pipelining with intra-node operations
4. Pipelined inter-node Allreduce
5. Communication Adaptive

Optimization Methods

Applicability 1 2 3 4 5

Baidu-Allreduce GPU ❌ ❌ ✔ ✔ ❌

Linear Pipelining GPU ❌ ❌ ✔ ✔ ❌

Reduce-scatter-Allgather CPU/GPU ❌ ❌ ❌ ❌ ❌

Segmented Ring GPU/CPU ❌ ❌ ✔ ✔ ❌

XPMEM-based Reduction  CPU ✔ ❌ ❌ ❌ ❌

Proposed “SALaR” CPU ✔ ✔ ✔ ✔ ✔

Various Designs:

Challenges
• Efficient pipeline of various steps and usage of XPMEM/SHMEM

• Efficient utilization of compute resources in all processes
• Orchestrating the data transfers to effectively utilize the network 

bandwidth without oversubscribing a particular link 

Performance of SALaR Designs on XEON+IB

1. SALaR-SHMEM/XPMEM: A pipelined 
Allreduce design which uses XPMEM/SHMEM 
for intra-node reduction and SALaR-Inter for 
inter-node reduction. Intra-node operation is 
overlapped with inter-node operation.

2. SALaR-Inter:  An efficient one-sided-based 
Inter-node Allreduce

SALaR-Inter Phases

SALaR-SHMEM Timeline

Naive SHArP Design
• SHArP only used in inter-node reduction operation

• Step 1: Intra-node reduction by one process in each node
• Step 2: Then Inter-node Allreduce using SHArP
• Step 3: Broadcast the final results from node-leader to other 

processes

Scalable and Adaptive Designs for Large Messages
Reduction Collectives (SALaR)
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Large Messages

c Baidu Allreduce Design: https://github.com/baidu- research/baidu-allreduce 
d Efficient communications in training large scale neural networks, Zhao et al, Thematic Workshops ACMMM2017 

e Bandwidth optimal all-reduce algorithms for clusters of workstations, Patarasuk et al, Journal of Parallel and Distributed Comp ‘09
f Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores,	Hashmi	et	al,	IPDPS	‘17
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Scalable Reduction Collectives with Data Partitioning-based Multi-Leader Design, Bayatpour et al, Supercomuting’17, Denver, Co. 
SALaR: Scalable and Adaptive Designs for Large Message Reduction Collectives, Bayatpour et al, IEEE Cluster’18, Belfast. UK
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