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Introduction

« This poster concerns thin QR decomposition for parallel computing.
 Fast algorithms are proposed (ex. TSQR [1], CholeskyQR2 [2] algorithms).
« We introduce CholeskyQR and CholeskyQR2 as follows.

% The CholeskyQR algorithm using MATLAB notation.
function [Q, R] = CholQR(A)
B=A*A; %0 0 0

% The CholeskyQR2 algorithm using MATLAB notation.
function [Q, R] = CholQR2(A)

[S, R1] = CholQR(A); %A 3z22p

R =chol(B); % Cholesky decomposition of a matrix B [Q, R2] =CholQR(S);, %S 122¢

Q=A/R; % Solve matrix equation R = R2*R1;
end end

« Advantage

V Very fast for parallel computing.
V These algorithms can benefit from optimized
BLAS and LAPACK.

« Disadvantage

V If ky(A) > Vu—1 , Cholesky decomposition for o
breaks down in many cases.

U O:unitroundoff.(ex.6 ¢  for binary 64)
i k2(A) = omax(A)/Tmin(A)

» Topic

V The main topic of our study is to propose robust and fast CholeskyQR algorithms for

ill-conditioned matrices.
V The proposed algorithms achieve high performance on large-scale parallel systems.

Robust CholeskyQR algorithm

« We focus on thin QR decomposition for full column rank matrices for which CholeskyQR breaks down.
e Cholesky decomposition in CholeskyQR breaks down when a given matrix is ill-conditioned.
« The reason is to take a square root of a negative number in Cholesky decomposition.

% The robust CholeskyQR algorithm using MATLAB notation.
function [Q, R] = robust_CholQR(A)
B=A*A; %0 0 0
[R, p] = chol(B); % Ifp=0,B~R'R,RcR"™™. Ifp>1, Bi1~R'R,Rc RP*P.

if p==
Q= AR %5 by B B11 B2

else - B B
R1=[R, R\B12; O, R22]; % where B = [B11, B12; B21, B22] 21 22
[SO: AR/Z?I; CholQR(S); 'Y is the preconditioner of CholQR expecting R R
(ART) = Vam(4) | Ry = 12

end 1 O R

end 22

« How to set the preconditioner
V Y isacomputed Cholesky factor of 0

Riy = chol(B11), Ris= Ry{ Bia, Rox=al

where

o = min(y/umax(d), min(d)), d = diag(R11) )

dlag(A) = (QII; az92,...,0nn
% The robust CholeskyQR2 algorithm using MATLAB notation.
function [Q, R] = robust_CholQR2(A)
[S, R1] = robust_CholQR(A);
[Q, R2] = CholQR(S);
R = R2*R1;
end

« Computational cost

V Computational cost for an m-by-n matrix.
V 0:the number of processors.
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* Features

V The cost of Robust_CholQR2 is nearly the same as that of CholeskyQR2 algorithm, if the CholeskyQR
algorithm is successful.
V In the worst case, the cost of Robust_CholQR2 is 1.5 times as much as that of CholeskyQR2.

LU-CholeskyQR algorithm [3]

« We have proposed CholeskyQR using LU factors.

% The LU-CholeskyQR algorithm using MATLAB notation.
function [Q, R] = LU_CholQR(A)
[L,U,P] = lu(A);

B =L'*L;
S =chol(B); % Cholesky decomposition for a matrix B
R =S*U;
Q=A/R; % Solve matrix equation
end

% The CholeskyQR2 algorithm using MATLAB notation.
function [Q, R] = LU_CholQR2(A)

[S, R1] = LU_CholQR(A);

[Q, R2] = CholQR(S);

R =R2*R1;
end

« Condition number of U is sufficiently small, and Cholesky decomposition for the Gram matrix 0 0 runs
to completion in many cases.

« Therefore, Cholesky QR through LU decomposition is applicable for ill-conditioned matrices and
numerically stable.

Results

« We compare the computational performance of thin QR decomposition on the RIKEN K-computer and
Fujitsu FX100 .

______ Kcomputer _________________NagoyaFX100

Processor SPARC64 VllIfx 8C (2GHz) Fujitsu SPARC64 Xifx (2.2 GHz)
The number of cores 705,024 92, 024

Memory 1,377,000 GiB 90,000 GiB
Interconnect Torus fusion (Tofu) interconnect Tofu interconnect 2
The number of nodes 88,128 2,885
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These figures show the worst case of computing times of Robust_CholQR.
Robust_CholQR achieves high performance compared to thin-QR decomposition using ScaLAPACK.
If the number of process of MPI is large or 0 has large column size, thin LUQR algorithm achieves high

performance.
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Feature of the proposed algorithms
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Conclusion

« The proposed CholeskyQR algorithms can run to completion for ill-conditioned matrices.
« Robust CholeskyQR achieves high performance on large-scale parallel systems.

For Robust CholeskyQR

* The cost of robust CholeskyQR?2 is the nearly the same as that of CholeskyQR2 algorithm, if the
CholeskyQR algorithm works successfully.

« When Cholesky decomposition is breaks down,

V IffL &, costofthe proposed algorithm is vt times as much as that of CholeskyQR2.

V If ¢, costof the proposed algorithm is of¢ times as much as that of CholeskyQR2.

 Future works

V Reduce computational cost
V CholeskyQR algorithm for more ill-conditioned matrices
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