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Introduction Results

Conclusion

• This poster concerns thin QR decomposition for parallel computing. 
• Fast algorithms are proposed (ex. TSQR [1], CholeskyQR2 [2] algorithms). 
• We introduce CholeskyQR and CholeskyQR2 as follows. 

• We focus on thin QR decomposition for full column rank matrices for which CholeskyQR breaks down.
• Cholesky decomposition in CholeskyQR breaks down when a given matrix is ill-conditioned.
• The reason is to take a square root of a negative number in Cholesky decomposition. 
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% The CholeskyQR algorithm using MATLAB notation.
function [Q, R] = CholQR(A)

B = A’*A;         % 𝐵 ≈ 𝐴𝑇𝐴
R = chol(B);    % Cholesky decomposition of a matrix B
Q = A/R;         % Solve matrix equation

end

% The CholeskyQR2 algorithm using MATLAB notation.
function [Q, R] = CholQR2(A)

[S, R1] = CholQR(A);       % A ≈ S ∗ R1
[Q, R2] = CholQR(S);       % S ≈ Q ∗ R2
R = R2*R1; 

end

• Advantage
 Very fast for parallel computing. 
 These algorithms can benefit from optimized 

BLAS and LAPACK. 

• Disadvantage
 If , Cholesky decomposition for 𝐵

breaks down in many cases.

• Topic
 The main topic of our study is to propose robust and fast CholeskyQR algorithms for

ill-conditioned matrices.
 The proposed algorithms achieve high performance on large-scale parallel systems.

% The robust CholeskyQR algorithm using MATLAB notation.
function [Q, R] = robust_CholQR(A)

B = A’*A;                          % 𝐵 ≈ 𝐴𝑇𝐴
[R, p] = chol(B);              %
if p == 0

Q = A/R;                       % 𝐴 ≈ 𝑄𝑅
else

R1 = [R, R’  B12; O, R22];     % where B = [B11, B12; B21, B22]
S = A/R1;                        
[Q, R2] = CholQR(S);
R = R1*R2;

end
end

• Computational cost
 Computational cost for an m-by-n matrix.
 𝑃: the number of processors. 

• The cost of robust CholeskyQR2 is the nearly the same as that of CholeskyQR2 algorithm, if the 
CholeskyQR algorithm works successfully.

• When Cholesky decomposition is breaks down,
 If 𝑝 ≪ 𝑛, cost of the proposed algorithm is 5/4 times as much as that of CholeskyQR2.
 If 𝑝 ≈ 𝑛, cost of the proposed algorithm is 3/2 times as much as that of CholeskyQR2.

• We compare the computational performance of thin QR decomposition on the RIKEN K-computer and 
Fujitsu FX100 .

% The robust CholeskyQR2 algorithm using MATLAB notation.
function [Q, R] = robust_CholQR2(A)

[S, R1] = robust_CholQR(A); 
[Q, R2] = CholQR(S);
R = R2*R1; 

end

• The proposed CholeskyQR algorithms can run to completion for ill-conditioned matrices.
• Robust CholeskyQR achieves high performance on large-scale parallel systems.

• Future works
 Reduce computational cost
 CholeskyQR algorithm for more ill-conditioned matrices

• We have proposed CholeskyQR using LU factors.

% The LU-CholeskyQR algorithm using MATLAB notation.
function [Q, R] = LU_CholQR(A)

[L,U,P] = lu(A);
B = L’*L; 
S = chol(B);    % Cholesky decomposition for a matrix B
R = S*U;
Q = A/R;         % Solve matrix equation

end

% The CholeskyQR2 algorithm using MATLAB notation.
function [Q, R] = LU_CholQR2(A)

[S, R1] = LU_CholQR(A); 
[Q, R2] = CholQR(S);
R = R2*R1; 

end

TSQR CholeskyQR2 Robust CholeskyQR2

#flops 4𝑚𝑛2

𝑃
+
4

3
n3log2𝑃

4𝑚𝑛2

𝑃
+ 𝑛3

4𝑚𝑛2

𝑃
+ 𝑛3 𝑜𝑟

5𝑚𝑛2 + 3𝑚𝑛𝑝 − 2𝑚𝑝2

𝑃
+
5𝑛3

3
#msgs 2log2𝑃 4log2𝑃 4log2𝑃 𝑜𝑟 6log2𝑃

#words 𝑛2log2𝑃 2𝑛2log2𝑃 2𝑛2log2𝑃 𝑜𝑟 3𝑛2log2𝑃

For Robust CholeskyQR

(1) K-computer, 𝑚 = 16,777,216 , 𝑛 = 16 (2) K-computer, 𝑚 = 16,777,216 , 𝑛 = 64 (3) K-computer, 𝑚 = 16,777,216 , 𝑛 = 256

(4) fx100,  𝑚 = 16,777,216 , 𝑛 = 16 (5) fx100, 𝑚 = 16,777,216 , 𝑛 = 64 (6) fx100, 𝑚 = 16,777,216 , 𝑛 = 256

• These figures show the worst case of computing times of  Robust_CholQR.
• Robust_CholQR achieves high performance compared to thin-QR decomposition using ScaLAPACK.
• If the number of process of MPI is large or 𝐴 has large column size, thin LUQR algorithm achieves high 

performance.

(7) Comparison of orthogonality (8) Comparison of residual

• 𝑚 = 1024, 𝑛 = 64.
• Proposed algorithms can compute QR

decomposition for ill-conditioned 
matrices.

• Computed QR factors have good 
orthogonality and residual

• If                               , we do not compute 
precondition of Robust CholeskyQR.
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• Features
 The cost of Robust_CholQR2 is nearly the same as that of CholeskyQR2 algorithm, if the CholeskyQR

algorithm is successful.
 In the worst case, the cost of Robust_CholQR2 is 1.5 times as much as that of CholeskyQR2.

LU-CholeskyQR algorithm [3]

LU_CholQR

Robust_CholQR

Robust_CholQR2 
and LUQR2

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

8 32 128 512 2048 8192

C
o

m
p

u
ti

n
g 

ti
m

e 
(s

ec
)

P

ScaLAPACK

CholQR2

LU_CholQR2

Robust_CholQR2

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

8 32 128 512 2048 8192

C
o

m
p

u
ti

n
g 

ti
m

e 
(s

ec
)

P

ScaLAPACK

CholQR2

LU_CholQR2

Robust_CholQR2

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

C
o

m
p

u
ti

n
g 

ti
m

e 
(s

ec
)

P

ScaLAPACK

CholQR2

LU_CholQR2

Robust_CholQR2

𝑅1 is the preconditioner of  CholQR expecting
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 These algorithms can successfully work for ill-conditioned matrices.
 Computational performances are higher than that of ScaLAPACK (pdgeqrf and pdorgqr).
 For robust CholeskyQR2, the orthogonality is high and the residual is small.

• How to set the preconditioner
 𝑅11 is a computed Cholesky factor of 𝐵11.

where

• Condition number of 𝐿 is sufficiently small, and Cholesky decomposition for the Gram matrix 𝐿𝑇𝐿 runs 
to completion in many cases.

• Therefore, Cholesky QR through LU decomposition is applicable for ill-conditioned matrices and 
numerically stable.

 𝑢 : unit round off. (ex. 𝑢 = 2−53 for binary 64)


Feature of the proposed algorithms

K-computer Nagoya FX100

Processor SPARC64 Vlllfx 8C (2GHz) Fujitsu SPARC64 Xifx (2.2 GHz)

The number of cores 705,024 92, 024

Memory 1,377,000 GiB 90,000 GiB

Interconnect Torus fusion (Tofu) interconnect Tofu interconnect 2

The number of nodes 88,128 2,885


