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Long Short-Term Memory (LSTM)

I LSTM is a type of recurrent neural network (RNN) which is
well-suited for processing temporal data

I Unlike traditional RNN, LSTM can handle exploding and
vanishing gradient problems encountered during neural
network training

I LSTM has found applications in language translation, text
generation, handwriting recognition and image captioning
among many others

I Operations in the forward pass of an LSTM cell
it = σ(Wi ∗ xt + Ri ∗ ht−1 + bi)
ct = tanh(Wc ∗ xt + Rc ∗ ht−1 + bc)
ft = σ(Wf ∗ xt + Rf ∗ ht−1 + bf )
ot = σ(Wo ∗ xt + Ro ∗ ht−1 + bo)
st = ft ◦ st−1 + it ◦ ct
ht = ot ◦ tanh(st)
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Figure 1: A diagram of an LSTM cell

Typical implementation of LSTM

+ Perform two large GEMMs (W ∗ x and R ∗ h) or one larger
GEMM (concatenated WR with concatenated xh)

X Easy to implement – leverage vendor-optimized GEMM
× Weight reuse relies on how the GEMMs are parallelized

and hence may be sub-optimal for GEMMs stemming from
small minibatch size

× Element-wise operations are exposed as bandwidth-bound
kernel (vs in-cache reuse of the GEMM outputs)

Our implementation of LSTM

+ Adopt a “dataflow” based approach for optimizations
I Use blocked layout to better exploit locality and avoid

conflict misses
I Given N = minibatch size, C = input channels and K =

output channels and T = total time steps
I Internally, transform the inputs in blocked format:
I Input: [T ][N][C]→ [T ][N/BN][C/BC][BN][BC]
I Hidden: [T ][N][K ]→ [T ][N/BN][K/BK ][BN][BK ]
I Weights: [C][4K ]→ [4K/BK ][C/BC][BC][BK ]
I Recurrent Weights: [K ][4K ]→ [4K/BK ][K/BK ][BK ][BK ]
I BN, BC and BK are blocking factors for N, C and K respectively

I Perform computation with fused time steps
I Amortize cost of blocking
I Optimized weight gradient computation

I Also, allow blocked inputs / weights to be passed directly
from framework
I Useful when performing one time step at a time

I Use JIT batch-reduce GEMM kernels
I Implement optimized blocked GEMM
I Implement fused kernel for elementwise operations (it , ft ,ot , ct , st ,ht)

I Using Intel AVX512 intrinsics to vectorize
I Use the Intel Short Vector Math Library (SVML) for fast tanh and sigmoid

I Once a block of GEMM is computed, apply element-wise operations
on it while hot in cache

I Our LSTM operators are thread-library agnostic (can use
any of pthreads, OpenMP, C++ threads, Cilk, TBB, etc.)

+ Same optimization principles applied to backward and
weight update passes

+ Our code is available through LIBXSMM at [9]

Integration into TensorFlow

I XsmmFusedLSTM: Implemented a wrapper in TensorFlow
similar to LSTMBlockFusedCell
I Single TensorFlow Op performing all time steps
I Best for performance but may require significant source code change

I XsmmLSTMCell: A wrapper in TensorFlow compatible with
BasicLSTMCell to perform single time step
I Allows use of RNNCell wrappers like MultiRNNCell, DeviceWrapper,

DropoutWrapper and ResidualWrapper
I Allows easy replacement inside application code where fused cell is

not used, e.g. GNMT
I Weights: Uses same layouts as in TensorFlow LSTMCell

I Optimizes block transpose when using XsmmLSTMCell
I Transpose happens outside time step loop when using dynamic rnn

Experimental Setup

All the experiments and measurements are conducted over
following hardware / software configuration
I Machine: Single socket Xeon Platinum 8180 with 28 Cores

(3+ TFLOPS peak), NVIDIA K40m (4+ TFLOPS peak, [6])
I MKL-DNN: from github (commit 3439371) compiled with

icc 19.0.0.117
I LIBXSMM: compiled with icc version 18.0.0 (we observed

slowdown with latest icc/SVML version)
I Stock Tensorflow w/o MKL: v1.12.0 installed using “pip

install tensorflow”
I Tensorflow with MKL: v1.12.0 compiled using gcc 8.3.0

with “-config=mkl”
I GNMT: NMT + GNMT attention (8 layers) with

Minibatch: 168, inter op threads: 1, intra op threads: 28

GNMT end-to-end training with TensorFlow

I First, with few lines of source code change, we replaced
BasicLSTMCell code by XsmmLSTMCell (XsmmLSTM)

I Then, we replaced unidirectional encoder layers with
XsmmFusedLSTM layers (+Fused Encoders)

I Switching to the Fused Cell for decoders is subject to future
due to Tensorflow’s decoder implementation.

I For 8-layer German-to-English model, Perplexity and
Gradient Norm of our implementation follows closely with
reference run and we achieved similar BLEU score to
reference version for 2-layer Vietnam-to-English translation

I Overall, we achieved 1.9× training speed up compared to
original TensorFlow code for 8-layer German-to-English
translation model exceeding Nividia K40m performance

I Major benefits come from improved efficiency for forward
pass GEMMs (1.5x speed up) and 12× reduction in cost
for elementwise operations (from 30% to 2.5%). Out of
24% of backward/update elementwise operations, single
BiasAddGrad takes about 16% of time which reduces to
less than 1% after optimization
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Figure 2: GNMT 8-layer Performance (with Turbo Enabled)
In a similar implementation ”OpenSeq2Seq” NVIDIA V100 (5x faster than one Xeon 8180) achieves 4.8x more throughput

2

20

200

2000

20000

1 42 83 12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

53
4

57
5

61
6

65
7

69
8

73
9

78
0

82
1

1 2 3 4

Pe
rp

le
xi

ty

#Training Iterations (in Hundreds)
#Epochs

Reference (Stock TF) Reference
XsmmLSTM  +Fused Encoders

Figure 3: GNMT Convergence: Perplexity
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Figure 4: GNMT 8-layer: Overall Time Breakup

18.7% 14.3% 11.2%

21.5% 25.1%
22.9%

5.4% 1.1%
1.0%

24.0%

1.0%
1.0%

5.8%

8.1%
6.5%

75.3%

49.6%
42.6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Reference XsmmLSTM +Fused Encoders

Others

Bwd EltWise

Fwd EltWise

Bwd GEMM

Fwd GEMM

Figure 5: GNMT: Time Spent inside LSTM Cell

LSTM cell efficiency

I Intel R© Math Kernel Library for Deep Neural Networks
(MKL-DNN) is an open source performance library from
Intel intended for acceleration of deep learning frameworks
on Intel architecture

I To demonstrate that our LSTM cell offers best-in-class
performance, we not only compare to Tensorflow
end-to-end but also to the MKL-DNN LSTM cell which is not
available in Tensorflow at the time of this writing
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Figure 6: Forward pass results, Turbo disabled for stability

I LIBXSMM cell is up to 1.4× faster than MKL-DNN LSTM
forward pass

I For large hidden state sizes, the two approaches exhibit
similar performance
I GEMM has cubic complexity while element-wise

operations quadratic→ for large sizes the element-wise
operations/bandwidth overhead are less emphasized

10
70 13

21

20
07

19
53

20
28

84
6 12

34 15
38 17

50 20
94

3046

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096

G
FL

O
PS

Hidden State Size

Minibatch: 168  #Time Steps: 50

LIBXSMM cell MKL-DNN Peak

Figure 7: Backward/weight update pass results, Turbo disabled

I LIBXSMM cell is up to 1.3× faster than MKL-DNN LSTM
backward/weight update pass

Summary

I Implementation of LSTM cell using a “dataflow” approach
instead of large GEMMs
I Maximize locality, weight reuse
I Fuse element-wise operations

I For small/medium sized problems, our implementation of
LSTM forward pass is up to 1.4× faster than the MKL-DNN
cell, while for backward/weight update it is up to 1.3× faster

I For large weight matrices the two approaches have similar
performance
I Cubic GEMM scaling VS quadratic elementwise scaling
I This conclusion may change with GEMM accelerated

hardware
I Dataflow approach is well suited for CPUs

I Coarse-grained parallelization and better locality control
I Modified TensorFlow which invokes our LSTM cell

implementation is shown to perform end-to-end training
attaining identical BLEU score and in as many iterations as
original TensorFlow CPU implementation

I A speed up of 1.9× is achieved using our LIBXSMM LSTM
cell over original TensorFlow implmentation for 8-layer
German-to-English translation model training

Current Research

I Our LSTM cell also supports bfloat16 – a new datatype
introduced by Intel – however, further tuning is needed to
expose its full potential

I Other than LSTM, we have also implemented vanilla RNN
and Gated Recurrent Unit (GRU) (available online on
github); we intend to experiment with these variants of RNN
and report their performance benefits on neural network
training/inference

I Evaluating how and if the proposed JIT batch-reduce
GEMM kernel can be used on GPU or deep learning
focused architectures
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