
Optimizing Deep Learning LSTM Topologies on
Intel Xeon Architecture

Kunal Banerjee, Evangelos Georganas, Dhiraj D. Kalamkar, Alexander Heinecke
Intel Corporation

Email: {kunal.banerjee, evangelos.georganas, dhiraj.d.kalamkar, alexander.heinecke}@intel.com

ISC 2019: Research Poster June 16 – 20, 2019

Long Short-Term Memory (LSTM)

I LSTM is a type of recurrent neural network (RNN) which is
well-suited for processing temporal data

I Unlike traditional RNN, LSTM can handle exploding and
vanishing gradient problems encountered during neural
network training

I LSTM has found applications in language translation, text
generation, handwriting recognition and image captioning
among many others

I Operations in the forward pass of an LSTM cell
it = σ(Wi ∗ xt + Ri ∗ ht−1 + bi)
ct = tanh(Wc ∗ xt + Rc ∗ ht−1 + bc)
ft = σ(Wf ∗ xt + Rf ∗ ht−1 + bf)
ot = σ(Wo ∗ xt + Ro ∗ ht−1 + bo)
st = ft ◦ st−1 + it ◦ ct
ht = ot ◦ tanh(st)

Ri

Rc

Rf

Ro

Wo Wf Wc Wi

bi

bc

bf

bo+

+

+

+ σ

tanh

σ

σ

mul

+

mul
st−1

tanh

mul ht

st

ht−1

xt

Figure 1: A diagram of an LSTM cell

Typical implementation of LSTM

+ Perform two large GEMMs (W ∗ x and R ∗ h) or one larger
GEMM (concatenated WR with concatenated xh)

X Easy to implement – leverage vendor-optimized GEMM
× Weight reuse relies on how the GEMMs are parallelized

and hence may be sub-optimal for GEMMs stemming from
small minibatch size

× Element-wise operations are exposed as bandwidth-bound
kernel (vs in-cache reuse of the GEMM outputs)

Our implementation of LSTM

+ Adopt a “dataflow” based approach for optimizations
I Use blocked layout to better exploit locality and avoid

conflict misses
I Given N = minibatch size, C = input channels and K =

output channels and T = total time steps
I Internally, transform the inputs in blocked format:
I Input: [T][N][C]→ [T][N/BN][C/BC][BN][BC]
I Hidden: [T][N][K]→ [T][N/BN][K/BK][BN][BK]
I Weights: [C][4K]→ [4K/BK][C/BC][BC][BK]
I Recurrent Weights: [K][4K]→ [4K/BK][K/BK][BK][BK]
I BN, BC and BK are blocking factors for N, C and K respectively

I Perform computation with fused time steps
I Amortize cost of blocking
I Optimized weight gradient computation

I Also, allow blocked inputs / weights to be passed directly
from framework
I Useful when performing one time step at a time

I Use JIT batch-reduce GEMM kernels
I Implement optimized blocked GEMM
I Implement fused kernel for elementwise operations (it , ft ,ot , ct , st ,ht)

I Using Intel AVX512 intrinsics to vectorize
I Use the Intel Short Vector Math Library (SVML) for fast tanh and sigmoid

I Once a block of GEMM is computed, apply element-wise operations
on it while hot in cache

I Our LSTM operators are thread-library agnostic (can use
any of pthreads, OpenMP, C++ threads, Cilk, TBB, etc.)

+ Same optimization principles applied to backward and
weight update passes

+ Our code is available through LIBXSMM at [9]

Integration into TensorFlow

I XsmmFusedLSTM: Implemented a wrapper in TensorFlow
similar to LSTMBlockFusedCell
I Single TensorFlow Op performing all time steps
I Best for performance but may require significant source code change

I XsmmLSTMCell: A wrapper in TensorFlow compatible with
BasicLSTMCell to perform single time step
I Allows use of RNNCell wrappers like MultiRNNCell, DeviceWrapper,

DropoutWrapper and ResidualWrapper
I Allows easy replacement inside application code where fused cell is

not used, e.g. GNMT
I Weights: Uses same layouts as in TensorFlow LSTMCell

I Optimizes block transpose when using XsmmLSTMCell
I Transpose happens outside time step loop when using dynamic rnn

Experimental Setup

All the experiments and measurements are conducted over
following hardware / software configuration
I Machine: Single socket Xeon Platinum 8180 with 28 Cores

(3+ TFLOPS peak), NVIDIA K40m (4+ TFLOPS peak, [6])
I MKL-DNN: from github (commit 3439371) compiled with

icc 19.0.0.117
I LIBXSMM: compiled with icc version 18.0.0 (we observed

slowdown with latest icc/SVML version)
I Stock Tensorflow w/o MKL: v1.12.0 installed using “pip

install tensorflow”
I Tensorflow with MKL: v1.12.0 compiled using gcc 8.3.0

with “-config=mkl”
I GNMT: NMT + GNMT attention (8 layers) with

Minibatch: 168, inter op threads: 1, intra op threads: 28

GNMT end-to-end training with TensorFlow

I First, with few lines of source code change, we replaced
BasicLSTMCell code by XsmmLSTMCell (XsmmLSTM)

I Then, we replaced unidirectional encoder layers with
XsmmFusedLSTM layers (+Fused Encoders)

I Switching to the Fused Cell for decoders is subject to future
due to Tensorflow’s decoder implementation.

I For 8-layer German-to-English model, Perplexity and
Gradient Norm of our implementation follows closely with
reference run and we achieved similar BLEU score to
reference version for 2-layer Vietnam-to-English translation

I Overall, we achieved 1.9× training speed up compared to
original TensorFlow code for 8-layer German-to-English
translation model exceeding Nividia K40m performance

I Major benefits come from improved efficiency for forward
pass GEMMs (1.5x speed up) and 12× reduction in cost
for elementwise operations (from 30% to 2.5%). Out of
24% of backward/update elementwise operations, single
BiasAddGrad takes about 16% of time which reduces to
less than 1% after optimization

0.97
1.22

1.63
1.85

1.70

1x 1.25x 1.68x 1.91x 1.75x

0.0

0.5

1.0

1.5

2.0

Reference Reference XsmmLSTM +Fused Encdr Reference

TF w/o MKL TF with MKL (Compiled from Source) TF with Cuda

Single Socket Intel Xeon Platinum 8180 Nvidia K40m

Ki
lo

 w
or

ds
 p

er
 s

ec
on

d

WPS Speed Up

Figure 2: GNMT 8-layer Performance (with Turbo Enabled)
In a similar implementation ”OpenSeq2Seq” NVIDIA V100 (5x faster than one Xeon 8180) achieves 4.8x more throughput

2

20

200

2000

20000

1 42 83 12
4

16
5

20
6

24
7

28
8

32
9

37
0

41
1

45
2

49
3

53
4

57
5

61
6

65
7

69
8

73
9

78
0

82
1

1 2 3 4

Pe
rp

le
xi

ty

#Training Iterations (in Hundreds)
#Epochs

Reference (Stock TF) Reference
XsmmLSTM +Fused Encoders

Figure 3: GNMT Convergence: Perplexity

3.5% 3.7% 3.5%5.7% 5.8% 5.8%
4.7% 4.8% 3.4%

75.3%

49.6%
42.6%

10.7%

10.9%
10.7%

1x 1.34x 1.51x

0%

20%

40%

60%

80%

100%

120%

Reference XsmmLSTM +Fused Encoders

Rest

LSTM Cell

DropOut

Output Proj

Attention

Speedup

Figure 4: GNMT 8-layer: Overall Time Breakup

18.7% 14.3% 11.2%

21.5% 25.1%
22.9%

5.4% 1.1%
1.0%

24.0%

1.0%
1.0%

5.8%

8.1%
6.5%

75.3%

49.6%
42.6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Reference XsmmLSTM +Fused Encoders

Others

Bwd EltWise

Fwd EltWise

Bwd GEMM

Fwd GEMM

Figure 5: GNMT: Time Spent inside LSTM Cell

LSTM cell efficiency

I Intel R© Math Kernel Library for Deep Neural Networks
(MKL-DNN) is an open source performance library from
Intel intended for acceleration of deep learning frameworks
on Intel architecture

I To demonstrate that our LSTM cell offers best-in-class
performance, we not only compare to Tensorflow
end-to-end but also to the MKL-DNN LSTM cell which is not
available in Tensorflow at the time of this writing

16
18 19

97 23
23

20
19 21

46

11
84 15

57 18
27 20

47

20
36

3046

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096

G
FL

O
PS

Hidden State Size

Minibatch: 168 #Time Steps: 50

LIBXSMM cell MKL-DNN Peak

Figure 6: Forward pass results, Turbo disabled for stability

I LIBXSMM cell is up to 1.4× faster than MKL-DNN LSTM
forward pass

I For large hidden state sizes, the two approaches exhibit
similar performance
I GEMM has cubic complexity while element-wise

operations quadratic→ for large sizes the element-wise
operations/bandwidth overhead are less emphasized

10
70 13

21

20
07

19
53

20
28

84
6 12

34 15
38 17

50 20
94

3046

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096

G
FL

O
PS

Hidden State Size

Minibatch: 168 #Time Steps: 50

LIBXSMM cell MKL-DNN Peak

Figure 7: Backward/weight update pass results, Turbo disabled

I LIBXSMM cell is up to 1.3× faster than MKL-DNN LSTM
backward/weight update pass

Summary

I Implementation of LSTM cell using a “dataflow” approach
instead of large GEMMs
I Maximize locality, weight reuse
I Fuse element-wise operations

I For small/medium sized problems, our implementation of
LSTM forward pass is up to 1.4× faster than the MKL-DNN
cell, while for backward/weight update it is up to 1.3× faster

I For large weight matrices the two approaches have similar
performance
I Cubic GEMM scaling VS quadratic elementwise scaling
I This conclusion may change with GEMM accelerated

hardware
I Dataflow approach is well suited for CPUs

I Coarse-grained parallelization and better locality control
I Modified TensorFlow which invokes our LSTM cell

implementation is shown to perform end-to-end training
attaining identical BLEU score and in as many iterations as
original TensorFlow CPU implementation

I A speed up of 1.9× is achieved using our LIBXSMM LSTM
cell over original TensorFlow implmentation for 8-layer
German-to-English translation model training

Current Research

I Our LSTM cell also supports bfloat16 – a new datatype
introduced by Intel – however, further tuning is needed to
expose its full potential

I Other than LSTM, we have also implemented vanilla RNN
and Gated Recurrent Unit (GRU) (available online on
github); we intend to experiment with these variants of RNN
and report their performance benefits on neural network
training/inference

I Evaluating how and if the proposed JIT batch-reduce
GEMM kernel can be used on GPU or deep learning
focused architectures

References:
[1] Sepp Hochreiter, Jurgen Schmidhuber. Long Short-Term Memory, Neural Computation 9(8): 1735–1780, 1997.
[2] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, Hans Pabst. LIBXSMM: Accelerating small matrix multiplications by runtime code generation, SC 2016: 981–991.
[3] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le et al. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, CoRR abs/1609.08144, 2016.
[4] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen et al. TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016: 265–283.
[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, CoRR abs/1412.3555, 2014.
[6] GNMT – TensorFlow Neural Machine Translation Tutorial, https://github.com/tensorflow/nmt
[7] MKL-DNN – Intel R© Math Kernel Library for Deep Neural Networks, https://github.com/intel/mkl-dnn
[8] TensorFlow – An Open Source Machine Learning Framework for Everyone, https://github.com/tensorflow/tensorflow
[9] LIBXSMM – Library targeting Intel Architecture for specialized dense and sparse matrix operations, and deep learning primitives, https://github.com/hfp/libxsmm

https://github.com/tensorflow/nmt
https://github.com/intel/mkl-dnn
https://github.com/tensorflow/tensorflow
https://github.com/hfp/libxsmm

