
,

Automatic port to OpenACC/OpenMP for Climate &
Weather Code using the CLAW Compiler

Valentin Clement1, Philippe Marti1, Xavier Lapillonne2, Oliver Fuhrer2, William Sawyer3

1ETH Zurich, Center for Climate Systems Modeling (C2SM), Zurich, Switzerland
2Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland

3CSCS Swiss National Supercomputing Centre, Lugano, Switzerland

C2SM
Center for Climate
Systems Modeling

,

1. Porting the ICON model to hybrid architecture

In order to prepare for heterogenous supercomputer architectures, the global
climate model ICON [4, 2] is being ported to accelerators. The major part
of the porting is achieved using OpenACC [5] compiler directives. For time-
critical components such as physical parameterizations, code restructuring and
optimizations are necessary to obtain optimal performance.
In some cases, these GPU-optimizations may have a negative impact when
running the same code on a CPU architecture. In order to address such
performance portability [3] issues without imposing disturbing changes to the
code base, the CLAW Single Column Abstraction (SCA) [1] was introduced.
It is designed to address the physical parameterizations of atmospheric mod-
els which are horizontally independent so each column can be computed sep-
arately. With this approach, the physical parameterizations are written in
Fortran only considering the vertical dependencies. The CLAW Compiler can
transform the code for a specific target architecture and insert compiler di-
rectives such as OpenMP or OpenACC.
In this poster, we introduce a special case of the CLAW SCA dedicated to the
ELEMENTAL functions and subroutines applied to the JSBACH soil model.

2. ICON JSBACH soil model and ELEMENTALs

JSBACH is the soil model of ICON in global configuration. The code takes
advantage of ELEMENTAL function or subroutine and vector notation. In
its current shape, the code is not suited to be ported easily to OpenACC or
OpenMP as compilers are not so permissive with PURE or ELEMENTAL func-
tions and subroutines. Nevertheless, an ELEMENTAL function or subroutine
can be seen as a specific case of the CLAW SCA. Indeed, the soil model is a
point-wise computation or a column-wise computation with a single vertical
level. Code transformation allows to achieve performance portability from a
single source code.

Some numbers about the JSBACH soil model:

IHeavy use of Fortran 2003/2008

I ˜30 tasks pipelined

I ˜30’000 LOC

I 35 ELEMENTAL functions / 33 ELEMENTAL subroutines

I 1 to N kernels generated by function/subroutine depending their size

3. Automatic port to OpenACC/OpenMP

Lines 3 and 7 of Figure 1 are the only additional CLAW directives inserted
into the code to drive the transformation. Those specify which fields coming
from the whole model have additional dimensions.

1 ELEMENTAL SUBROUTINE c a l c r a d i a t i o n s u r f a c e (swvis down , swnir down , a l b v i s , a l b n i r , lw down , t , r a d n e t , &
2 s w v i s n e t , s w n i r n e t , sw net , l w n e t)
3 ! $ c law model−data
4 REAL(wp) , INTENT(i n) : : swvis down , swnir down , a l b v i s , a l b n i r , lw down , t
5 REAL(wp) , INTENT(out) : : r a d n e t
6 REAL(wp) , INTENT(out) , OPTIONAL : : s w v i s n e t , s w n i r n e t , sw net , l w n e t
7 ! $ c law end model−data
8 REAL(wp) : : z s w v i s n e t , z s w n i r n e t , zsw net , z l w n e t
9

10 ! Compute n e t SW r a d i a t i o n from downward SW and a l b e d o
11 z s w v i s n e t = sw v i s do wn ∗ (1 . wp − a l b v i s)
12 z s w n i r n e t = swni r down ∗ (1 . wp − a l b n i r)
13 z s w n e t = z s w v i s n e t + z s w n i r n e t
14 ! Compute LW n e t r a d i a t i o n from i n c o m i n g and t h e t h e r m a l r a d i a t i o n
15 z l w n e t = l w n e t f r o m l w d o w n (lw down , t)
16 ! Compute n e t r a d i a t i o n
17 r a d n e t = z s w n e t + z l w n e t
18
19 I F (PRESENT(s w v i s n e t)) s w v i s n e t = z s w v i s n e t
20 I F (PRESENT(s w n i r n e t)) s w n i r n e t = z s w n i r n e t
21 I F (PRESENT(s w n e t)) s w n e t = z s w n e t
22 I F (PRESENT(l w n e t)) l w n e t = z l w n e t
23 END SUBROUTINE c a l c r a d i a t i o n s u r f a c e n e t

Figure 1: Typical JSBACH ELEMENTAL subroutine

The CLAW SCA transformation for ELEMENTAL is only triggered for the
GPU target. It performs the following steps:

IChange attributes of the function/subroutine signature or duplicate it if
needed.

I Insert DO statements to iterate over domain dimensions.

IPerform data dependencies analysis and apply promotion on variables that
needs it.

I Insert OpenACC or OpenMP compiler directives for parallelization and data
movement based on the data dependencies analysis.

IData movement strategy and parallelization strategy are configurable from
the command line or the CLAW configuration file.

The dimensions information of the model are stored in a TOML configuration
file. The same file is used by all the transformation in JSBACH.

4. CLAW Compiler

Open-source source-to-source compiler for Fortran 2008 code. Transforms CLAW
directives to produce optimized code for specific target architecture and com-
piler directives. Based on the OMNI Compiler Project[6]. Modular and easily
extensible to new transformations with a plug-in.

original.f90

FPP

original.pp.f90

OMNI F-Front

XcodeML/F IR input

CLAW X2T

XcodeML/F IR output

OMNI F-Back

transformed.f90

Figure 2: CLAW Compiler workflow

Fortran code is pre-processed and then parsed to the XcodeML/F[7] IR. This IR repre-
sented as an AST is then manipulated by CLAW X2T to produce the different version
of the code for a specific target with inserted directives. Finally, the IR is decompiled
to standard Fortran code before being compiled by default compilers.

1 $ c law f c −−t a r g e t=gpu −−d i r e c t i v e=acc −o t r a n s f o r m e d . f 9 0 o r i g i n a l . f 9 0

Figure 3: Call the CLAW Compiler for a GPU target with OpenACC directives

5. Current results

Early results of our approach are shown here. Figure 4A shows the execution time of
three tasks (T1, T2 and T3) representative of the computation patterns and size found
in JSBACH. All results are obtained with Cray Compiler CCE 8.7.3 on Piz Daint.

T1 T2 T3

2
5

10

15

20

25

30

35

40

E
xe

cu
ti

on
ti

m
e

[s
]

A) Execution time comparison

Original Code (12cores)
CLAW SCA / GPU OpenACC
CLAW SCA / GPU OpenMP

T1 T2 T3 Total
0

1

2

3

S
p

ee
du

p

B) Achieved speedup

Speedup CPU (ref) vs. GPU

Figure 4: Performance comparison (socket to socket) of JSBACH tasks on Intel Haswell E5-2690v3 and NVIDIA P100. Domain size (number of
horizontal grid points × vertical levels) = 20480×47.

IThe code in the repository contains zero OpenACC/OpenMP directives. Versions
are automatically generated.

I3.6x speedup on the longest task and 3.2x speedup achieved for the total execution
with no change in the original code besides the introduction of 1 CLAW block directives
as shown in Figure 1.

IOpenACC and OpenMP versions of the generated code give similar performance.

IHand-written version would require 20 times more directives to achieve the same
results.

IMaintenance of the code is simplified since CLAW re-generates the OpenAC-
C/OpenMP directives when new changes come in. Data movement are always up-to-
date.

IThe source code stays 100% Standard Fortran.

This approach is currently applied to the rest of soil model used in ICON and will be
the only accelerated available version.

References

[1] V. Clement, S. Ferrachat, O. Fuhrer, X. Lapillonne, C. E. Osuna, R. Pincus, J. Rood, and W. Sawyer.
The claw dsl: Abstractions for performance portable weather and climate models.
In Proceedings of the Platform for Advanced Scientific Computing Conference, PASC ’18, pages 2:1–2:10, New York, NY, USA, 2018. ACM.

[2] T. Crueger, M. A. Giorgetta, R. Brokopf, M. Esch, S. Fiedler, C. Hohenegger, L. Kornblueh, T. Mauritsen, C. Nam, A. K. Naumann, K. Peters, S. Rast, E. Roeckner,
M. Sakradzija, H. Schmidt, J. Vial, R. Vogel, and B. Stevens.
Icon-a, the atmosphere component of the icon earth system model: Ii. model evaluation.
Journal of Advances in Modeling Earth Systems, 10(7):1638–1662, 2018.

[3] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming, M. Bianco, A. Arteaga, and T. C. Schulthess.
Towards a performance portable, architecture agnostic implementation strategy for weather and climate models.
Supercomputing frontiers and innovations, 1(1):45–62, 2014.

[4] M. A. Giorgetta, R. Brokopf, T. Crueger, M. Esch, S. Fiedler, J. Helmert, C. Hohenegger, L. Kornblueh, M. Köhler, E. Manzini, T. Mauritsen, C. Nam, T. Raddatz, S. Rast,
D. Reinert, M. Sakradzija, H. Schmidt, R. Schneck, R. Schnur, L. Silvers, H. Wan, G. Zängl, and B. Stevens.
Icon-a, the atmosphere component of the icon earth system model: I. model description.
Journal of Advances in Modeling Earth Systems, 10(7):1613–1637, 2018.

[5] X. Lapillonne and O. Fuhrer.
Using compiler directives to port large scientific applications to gpus: An example from atmospheric science.
Parallel Processing Letters, 24(1), Mar. 2014.

[6] Omni Compiler Project - An Infrastructure for Source-to-Source Transformation, 2013-2019.
http://omni-compiler.org.

[7] XcalableMP Specification Working Group.
XcodeML/Fortran Specification.
Language specification, RIKEN AICS, Kobe, Japan, July 2017.

https://claw-project.github.io ISC High Performance 2019 - June 16-20 valentin.clement@env.ethz.ch

https://claw-project.github.io
mailto:valentin.clement@env.ethz.ch

