
0

10

20

30

40

50

60

70

80

Large (6.8M Atoms) Very Large (11M Atoms)

Sp
ee

d
 u

p
 c

o
m

p
ar

ed
 t

o
 s

er
ia

l c
o

d
e

Speedup Compared to Unaccelerated Performance

Multicore (32 Cores)

PASCAL P100 GPU

VOLTA V100 GPU

Accelerating Chemical Shift Prediction for Large-scale Biomolecular Modeling
Ph.D. Students: Eric Wright (efwright@udel.edu) and Mauricio Ferrato (mferrato@udel.edu)

Mentors: Prof. Sunita Chandrasekaran, Prof. Juan Perilla, Alex Bryer, Robert Searles
Dept. of Computer and Information Sciences and Dept. of Chemistry, University of Delaware

https://crpl.cis.udel.edu/

We gratefully acknowledge the support of NVIDIA PSG Cluster for access to their P100 and V100 GPUs used for this research. We also gratefully acknowledge Prof. Andy Novocin at the University of Delaware as the work was partially done under Vertically Integrated Project (VIP).

Future Work

References & Acknowledgements

Results

DATASETSMOTIVATION AND GOAL

PROJECT ROADMAP

MOTIVATION
• Chemical shift, a principle observable in Nuclear Magnetic Resonance

(NMR) instrumentation provides valuable insight into protein secondary
structure

• Biomolecular complexes are large, with some atomic-models containing
100's of millions of atoms and structure determination of these
complexes remain challenging due to computation complexity

• Recent advances in nanoscale imaging techniques (e.g., cryoEM, NMR, x-
ray crystallography) make it possible for scientists to study these huge
structures in silico, which means there's a huge need for well-optimized,
parallel codes that can handle these techniques

• Chemical shift prediction algorithms have not been previously
implemented for accelerated hardware, and computation of very large
molecular structures was simply non-practical due to the large runtime

GOAL
• Create a GPU accelerated chemical shift prediction application based

on the PPM_One [1] code

• A single molecular structure (typically a protein)
• Size of the molecule (number of total atoms) is the most reliable

indicator of total runtime
• Protein (A): a single HIV dimer, consisting of ~2,000 atoms
• Protein (B): a full HIV capsid [2] - composed of thousands of

dimers and contains ~2.1 million atoms
• Protein (C) and (D): variations of B, with up to 5 million atoms

Protein (E): a molecular motor that contain over 10 million atoms

Very Small
(100K) Atoms

Medium
(2.1M) Atoms

Large
(6.8M) Atoms

Very Large
(11M) Atoms

Serial
(Unoptimized)

167.11s 3547.07

(1 hour)

7 hours
approx.

14 hours
approx.

Serial
(Optimized)

32s 2209.64s
(37 min)

2939s
(48 min)

9035s
(2.5 hours)

Multicore
(32 cores)

2.93s 109s 172s 427s

NVIDIA PASCAL
P100 GPU

1.72s 36s 69s 170s

NVIDIA VOLTA
V100 GPU

1.68s 29s 56s 134s

67X Speedup

USING OpenACC DIRECTIVES
• In order to maintain portability of many different hardware

architectures, and to ease the development process of working on a
pre-existing code, we decided to use OpenACC to parallelize the code

• OpenACC [3], a directive-based parallel programming model for
accelerators

• Scale PPM_ONE across nodes and multiple GPUs using MPI + OpenACC
• Incorporate core functions from PPM_One into other GPU accelerated packages, such as:

• NAMD (Nanoscale Molecular Dynamics) enabling protein structure refinement combined
with other experimental techniques

• VMD (Visual Molecular Dynamics) enabling scientists to perform structure validation

1. Li, D., and R. Brüschweiler, 2015. PPM_One: a static protein structure based chemical shift
predictor. Journal of Biomolecular NMR 62:403–409

2. Perilla, J.R., Zhao, G., Lu, M., Ning, J., Hou, G., Byeon, I.J.L., Gronenborn, A.M., Polenova, T. and
Zhang, P., 2017. CryoEM structure refinement by integrating NMR chemical shifts with
molecular dynamics simulations. The Journal of Physical Chemistry B, 121(15), pp.3853-3863.

3. https://www.openacc.org/

• Here we show the absolute
runtime of the code with
various datasets and GPUs

• All results using the Intel Xeon
E5-2698 (32 cores) CPU and
single GPUs

• PGI 18.4 compiler and CentOs
7.5 OS

• Accelerated speedup is
measured with respect to the
optimized serial performance

• With largest available dataset (11M
atoms) and an NVIDIA V100 GPU, we see
up a 67xspeedup respectively when
compared to single core optimized
performance

• OpenACC multicore with a dual socket 32
core CPU is at 21x speedup

• Compared to a fully utilized CPU node (32
cores), the V100 GPU is seeing ~3.4x
speedup

• The main limitation we are facing is the
extensive data pre-processing step

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>

}

}

Compiler
Hint

CPU
Parallel Hardware

Find the code on
github!

• While we brought down the time taken from ~14 hours to 134 seconds, of the 134 seconds of our best
runtime, pre-processing takes about 110 seconds of it

• If we completely re-wrote the entire pre-processing portion of the code, we estimate that we would
achieve ~13x speedup of V100 GPU vs. 32-core CPU

gethbond
5%

getani
0%

Ot…

get_contact
94%

get_co
ntact
44%

gethbond
14%

getani
18%

getring
12%

Other
12%

Profile of ~100,000 atoms

Profile of ~10 million atoms

Serial Multicore V100 GPU

get_contact 2505s 100s 15s

gethbond 337s 19s 1.24s

getani 29s 1.5s 0.09s

getring 19s 0.84s 0.09s

Using Large 5.8M Atom Dataset on 32 core CPU and
Volta V100 GPU (same setup as Results section)

• There are several individual Molecular
Dynamics functions that are used to
estimate chemical shift (mostly rooted in
linear algebra problems)

• These functions are get_contact, gethbond,
getani, and getring

• Since they are all standalone, they present
a good opportunity in porting them to
other GPU accelerated molecular dynamics
packages (see future work!)

• For this reason, it is important to note by
how much each function sped up when
using multicore CPU and GPUs

• PPM_One is an object-orientated C++ code with most
of our data existing within a class

• Because of this, we implemented our data
management as an “OpenACC GPU Aware Class”

• This means tying GPU data alloc/dealloc to the class
alloc/dealloc, and handling data movement with
update directives in class member functions

• Most of our data
is also read-only,
allowing us to
allocate them on
the device and not
have to worry
about movement

• Re-profiling after our optimizations shows
dramatic reduction of the runtime of
“getselect” and “Other”

• “get_contact” was still by far the most
intensive function, followed somewhat by
“gethbond”

• Re-profiling with larger data sizes also
revealed that “get_contact” and “gethbond”
were the strongest scaling functions as well,
meaning that we would parallelize them first

• We also continued to use the profiler tool to
check ourselves and ensure that the changes
we were making were meaningful

0

200

400

get_contact gethbond getani getringSp
ee

d
u

p
 o

f
Se

ri
al

 v
s.

V

10
0

A
cc

el
er

at
ed

Invidual Function Speedup

• This is a multi-semester project with collaboration
from the University of Delaware’s computer science
and chemistry departments

• The majority of the project was completed by a small
team of undergraduate CIS students, two of which
eventually moved on to be graduate students

• Two other graduate students (from CIS and CHEM)
supported the team with
GPU and Chemistry
mentoring

• The team won the VIP
Mid-Atlantic research
competition.

get_c…

getsel
ect

23%

gethb
ond
5%

getani
14%

getrin
g

4%

Other
19%

• We were originally
introduced to the code by
our CHEM collaborators

• Profiling with the PGPROF
tool allowed us to get a
high-level overview without
reading through thousands
of lines of code

• Profiling also gave us a clear idea of which parts of
the code we would be tackling

• We then looked at these functions to see why they
were taking this amount of time

• We also broke the “Other” category down to see
what parts of it we should focus on

Blog about the competition

• Our first major roadblock was
with C++ STL Vectors

• This data structure obscures
the data from us and makes it
difficult to manage CPU-GPU
data

• We replaced vectors with C-
style arrays when possible, and
in some cases we could simply
use data() to get the
underlying pointer for our
OpenACC data constructs

vector<proton> protons;
vector<double> results;
traj->getani(protons.data(),

results.data());

• Some parts of the code showed up
in the profile as time-consuming

• Some parts of the code were not
very parallelizable because were
originally written “algorithm
focused” instead of “performance
focused”

• We rewrote and reorganized some
of these parts to make more sense
for the parallel application

• One example is the
“getselect” function which
was profiled as the second-
most time consuming
function

• Optimizing “getselect” was
very simple, but was not
something we would have
seen without a profile

• The original filter algorithm
was not an ideal
implementation (running in
O(n2) time)

• We replaced it with an O(n)
implementation which
reduced the execution time
by minutes

c2=getselect(“:1-%@allheavy”);
for(...) { // Large main loop
// c2=getselect(“:1-%@allheavy”);

get_contact(..., c2, ...);
}

Some simple code reordering is enough to
reduce total time by over 20%!

CTraj::CTraj() {
double *x = new double[size];
#pragma acc enter data create(x[:size])

}

void CTraj::updateHost() {
#pragma acc update self(x[:size])

}

Project Start Serial
Optimizations

Serial Profile Re-Profile Function Parallelization

Data
Management

https://www.openacc.org/

