
M
e

m
o

ry
 B

an
d

w
id

th
 [

G
B

/s
]

Array Size [^3]

A

B

Sustained memory bandwidths vary with the number of arrays

N = 1 N = 2

N = 4 N = 8

Memory First : A Performance Tuning Strategy Focusing on Memory Access Patterns

ISC 2019 Research Poster Session

Background High Bandwidth Memory

Need for Memory-Aware Code Optimization

Memory First !

✓ “Memory wall” has become one of the most
worrisome issues in HPC.

➢ Sustained memory bandwidth potentially
limits the performance of real applications.
◆ Cannot timely provide enough data to

fully utilize a huge amount of available
computational resources.

✓ Memory-aware code tuning is crucial for
exploiting the performance of modern HPC
systems.

✓ To overcome the memory wall problem, high bandwidth
memory such as HMC and HBM plays key roles in modern
HPC systems.

✓ High bandwidth memory consists of multiple channels,
modules, and banks for achieving a higher memory
bandwidth by the interleaved data transfers.
 EX, NEC SX-Aurora TSUBASA (SX-AT) and NVIDIA Tesla V100 have

6 and 4 HBM modules, respectively.

Memory-Aware Code Tuning is needed

✓ SX-AT has in total 48 channels,
each of which is connected to 32 banks.

core core

core core

core core

core core

Memory
Module

Memory
Module

Memory
Module

Channels

Channels

Channels

Bank 1 Bank 2 Bank n･･･

Bank 1 Bank 2 Bank n･･･

Bank 1 Bank 2 Bank n･･･

･
･
･

･
･
･

･
･
･

Channel
1

Channel
2

Channel
n

･
･
･

Case Study

Evaluation
codes

Sustained memory bandwidth (STREAM Triad) evaluated with changing
the number of arrays being accessed

Spike-like severe performance drops occur when the array size is a multiple value of 48 (the number
of channels) or 32 (the number of banks), because memory access conflicts frequently occur.

Stable performance on memory-intensive kernels by always accessing as many memory channels and

banks as possible.

✓ In the case of the Memory First strategy, a tiny code not causing conflicts on the target system is
first developed, and its data layout is always used for any array sizes.
✓ In addition to basic loop optimizations for enhancing vectorization, another key to extracting

the SX-AT performance is to avoid memory access conflicts (bank conflicts).

Evaluation Results
Evaluation Setup

NEC SX-Aurora TSUBASA Type-10BSystem

Number of cores 8

Core Performance 268 Gflop/s

Clock Frequency 1.4 GHz

Total Peak
Performance

2.15 Tflop/s

Memory Capacity 48GB (6 HBM Modules)

Each HBM module has 8 Channels,
and each channel has 32 Banks

Memory Bandwidth 1228 GB/s

48 Channels x 16 Bytes/clock x 1.6 GHz

VEOS VEOS 1.3.2

Compiler NEC Fortran compiler (nfort) 1.6.0

Application UPACS-Parts

Kernel Computation Eq. term
Prog.
Type

of
arrays

cflux Flux Convection Stream 15

vflux Flux Viscous Stream 21

muscl
Physical quantity
complementation of
cell surface

Convection Stencil 15

cfacev
Differentiation of cell
surface Viscous Stencil 21

Basic Kernels of CFD code, UPACS, developed at JAXA

Evaluation results

The array sizes which can achieve stable performance is
already known to be 1813 by preliminary evaluations.

By specifying an appropriate array size,
spike-like performance degradations can successfully be removed.

cflux vflux

muscl cfacev

✓ Memory First, a memory-centric code optimization strategy is discussed.
 On a modern HPC system, a high sustained memory bandwidth can

be achieved only if a code is carefully written to access as many
channels and banks as possible.

 One idea to achieve high sustained performance at a low tuning cost
is to first write a tiny benchmark code capable of exploiting the
bandwidth, and then modify it to develop an application kernel.

✓ Future work
 Establish an analyitical model to predict an appropriate data layout

not causing memory access conflicts.
 Develop a runtime support mechanism to prevent inter-thread

access conflicts

Multi threads execution of cflux

In the case of parallel execution, memory access conflicts among multiple threads could
occur and the performance slightly fluctuate when changing the array size.

But, yet, the memory-centric optimization can reduce spike-like performance degradations.

cflux original cflux optimized

N = 8

Conclusions

✓ Data allocation among memory modules and banks
➢ Data (array elements) are allocated to the memory cells in a round-robin manner

with the following priority.
◆ Different Channels > Different Banks

✓ A conflict happens upon accesses to the same channel or bank .
 Since memory accesses to the same channel or bank should be processed

serially, a subsequent memory access should wait until its preceding access is
completed.

Memory Module 1

Bank 1

Bank 2

Bank 1

Bank 2

Cores

Channel 1 Channel 2

Memory Module 2

Bank 1

Bank 2

Bank 1

Bank 2

Channel 3 Channel 4

90 12 3

4 56 7

8

1 2 3 4 5 6 70
Memory Cells

a[0]Array elements a[1] a[2] a[3] a[4] a[5] a[6 a[7]

Bank Conflict (e.g. a[n] + b[n])

8

b[0]

9

b[1] ･･･

･･･

Conflict

Memory Module 1

Bank 1

Bank 2

Bank 1

Bank 2

Cores

Channel 1 Channel 2

Memory Module 2

Bank 1

Bank 2

Bank 1

Bank 2

Channel 3 Channel 4

90 12 3

4 56 7

8

1 2 3 4 5 6 7 80
Memory Cells

a[0]Array elements a[1] a[2] a[3] a[4] a[5] a[6 a[7] a[8]

9

a[9] ･･･

･･･

Data Allocation

Access Conflicts in Modern HPC Memory Subsystem

Memory First = a “memory-centric” performance tuning approach
1. Write a tiny benchmark code, which is similar to the target kernel and capable of

efficiently using the system’s memory bandwidth.
(In the CFD field, the kernel is likely either stream or stencil.)

2. Modify the tiny code so as to work as the target kernel.
→ The tiny code is already considered to make good

use of memory bandwidth
= Minimizing the modification for memory awareness

Memory-aware
Performance

Tuning

Application
coding

Well established in matured application areas, such as CFD.

Carefully considered whenever a new architecture becomes available

→ Importance of reducing the memory-aware tuning cost

Traditional performance tuning steps
1. Write a whole application correctly computing the results
2. Optimize the code so as to exploit the system performance
→ The second step (memory-aware tuning) often needs major

code modifications (e.g. data layout optimization)

In spite of their high peak bandwidths, high
“sustained” bandwidths cannot be attained

without careful code tuning.

Single thread execution

Optimize

A

B

a(1)~a(NA)

b(1)~b(NA)

Frequent
conflicts

A’s data layout is
used for B.

a(1)~a(NB)

b(1)~b(NB)
b(1)~b(NB)

a(1)~a(NB)

No conflict

A High sustained bandwidth
B Low sustained bandwidth due to frequent conflicts

Can we use A’s data layout also for B?

Data Layout optimization

Naoki EBATA†, Ryusuke EGAWA†, Yoko ISOBE†, Ryoji TAKAKI*, and Hiroyuki TAKIZAWA†

†Tohoku University, Email: {ebata.naoki.r7@dc. , isobe@, egawa@, takizawa@}tohoku.ac.jp
*Japan Aerospace Exploration Agency, Email: ryo@isas.jaxa.jp

This work is partially supported by MEXT Next Generation High-Performance Computing Infrastructures and Applications R&D Program “R&D of A Quantum-Annealing-Assisted Next Generation HPC Infrastructure and its
Applications” and Grant-in-Aid for Scientific Research(B) #16H02822 and #17H01706.

