
M
e

m
o

ry
 B

an
d

w
id

th
 [

G
B

/s
]

Array Size [^3]

A

B

Sustained memory bandwidths vary with the number of arrays
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Memory First : A Performance Tuning Strategy Focusing on Memory Access Patterns
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Background High Bandwidth Memory

Need for Memory-Aware Code Optimization

Memory First !

✓ “Memory wall” has become one of the most 
worrisome issues in HPC.

➢ Sustained memory bandwidth potentially 
limits the performance of real applications.
◆ Cannot timely provide enough data to 

fully utilize a huge amount of available 
computational resources.

✓ Memory-aware code tuning is crucial for 
exploiting the performance of modern HPC 
systems.

✓ To overcome the memory wall problem, high bandwidth 
memory such as HMC and HBM plays key roles in modern 
HPC systems.

✓ High bandwidth memory consists of multiple channels, 
modules, and banks for achieving a higher memory 
bandwidth by the interleaved data transfers.
 EX, NEC SX-Aurora TSUBASA (SX-AT) and NVIDIA Tesla V100 have 

6 and 4 HBM modules, respectively.

Memory-Aware Code Tuning is needed

✓ SX-AT has in total 48 channels, 
each of which is connected to 32 banks.
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Case Study

Evaluation 
codes

Sustained memory bandwidth (STREAM Triad) evaluated with changing 
the number of arrays being accessed

Spike-like severe performance drops occur when the array size is a multiple value of 48 (the number 
of channels) or 32 (the number of banks), because memory access conflicts frequently occur.

Stable performance on memory-intensive kernels by always accessing as many memory channels and 

banks as possible.

✓ In the case of the Memory First  strategy,  a tiny code not causing conflicts on the target system is 
first developed, and its data layout is always used for any array sizes.
✓ In addition to basic loop optimizations for enhancing vectorization, another key to extracting 

the SX-AT performance is to avoid memory access conflicts (bank conflicts).

Evaluation Results
Evaluation Setup

NEC SX-Aurora TSUBASA Type-10BSystem 

Number of cores 8

Core Performance 268 Gflop/s

Clock Frequency 1.4 GHz

Total Peak 
Performance

2.15 Tflop/s

Memory Capacity 48GB (6 HBM Modules)

Each HBM module has 8 Channels, 
and  each channel has 32 Banks

Memory Bandwidth 1228 GB/s

48 Channels x 16 Bytes/clock x 1.6 GHz

VEOS VEOS 1.3.2

Compiler NEC Fortran compiler (nfort) 1.6.0

Application UPACS-Parts

Kernel Computation Eq. term
Prog.
Type

# of 
arrays

cflux Flux Convection Stream 15

vflux Flux Viscous Stream 21

muscl
Physical quantity 
complementation of 
cell surface

Convection Stencil 15

cfacev
Differentiation of cell 
surface Viscous Stencil 21

Basic Kernels of CFD code, UPACS, developed at JAXA

Evaluation results

The array sizes which can achieve stable performance is 
already known to be 1813 by preliminary evaluations.

By specifying an appropriate array size, 
spike-like performance degradations can successfully be removed.

cflux vflux

muscl cfacev

✓ Memory First, a memory-centric code optimization strategy is discussed.
 On a modern HPC system, a high sustained memory bandwidth can 

be achieved only if a code is carefully written to access as many 
channels and banks as possible.

 One idea to achieve high sustained performance at a low tuning cost 
is to first write a tiny benchmark code capable of exploiting the 
bandwidth, and then modify it to develop an application kernel.

✓ Future work
 Establish an analyitical model to predict an appropriate data layout 

not causing memory access conflicts.
 Develop a runtime support mechanism to prevent inter-thread 

access conflicts

Multi threads execution of cflux

In the case of parallel execution, memory access conflicts among multiple threads could 
occur and the performance slightly fluctuate when changing the array size. 

But, yet, the memory-centric optimization can reduce spike-like performance degradations.

cflux original cflux optimized

N = 8

Conclusions

✓ Data allocation among memory modules and banks
➢ Data (array elements) are allocated to the memory cells in a round-robin manner 

with the following priority.
◆ Different Channels > Different Banks

✓ A conflict happens upon accesses to the same channel or bank .
 Since memory accesses to the same channel or bank should be processed 

serially,  a subsequent memory access should wait until its preceding access is 
completed.
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Data Allocation

Access Conflicts in Modern HPC Memory Subsystem

Memory First = a “memory-centric” performance tuning approach
1. Write a tiny benchmark code, which is similar to the target kernel and capable of 

efficiently using the system’s memory bandwidth.
(In the CFD field, the kernel is likely either stream or stencil.)

2. Modify the tiny code so as to work as the target kernel.
→ The tiny code is already considered to make good

use of memory bandwidth
= Minimizing the modification for memory awareness

Memory-aware 
Performance 

Tuning

Application 
coding

Well established in matured application areas, such as CFD.

Carefully considered whenever a new architecture becomes available

→ Importance of reducing the memory-aware tuning cost

Traditional performance tuning steps
1. Write a whole application correctly computing the results
2. Optimize the code so as to exploit the system performance
→ The second step (memory-aware tuning) often needs major

code modifications (e.g. data layout optimization)

In spite of their high peak bandwidths, high 
“sustained” bandwidths cannot be attained 

without careful code tuning.

Single thread execution

Optimize
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Frequent 
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A’s data layout is
used for B.
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No conflict

A High sustained bandwidth
B Low sustained bandwidth due to frequent conflicts

Can we use A’s data layout also for B?

Data Layout optimization
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